Inbred mice used for biomedical research display an underdeveloped immune system compared with adult humans, which is attributed in part to the artificial laboratory environment. Despite representing a central component of adaptive immunity, the impact of the laboratory environment on the B cell compartment has not been investigated in detail. Here, we performed an in-depth examination of B cells following rewilding, the controlled release of inbred laboratory mice into an outdoor enclosure. In rewilded mice, we observed B cells in circulation with increased signs of maturation, alongside heightened germinal center responses within secondary lymphoid organs. Rewilding also expanded B cells in the gut, which was accompanied by elevated systemic levels of immunoglobulin G (IgG) and IgM antibodies reactive to the microbiota. Our findings indicate that exposing laboratory mice to a more natural environment enhances B cell development to better reflect the immune system of free-living mammals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11887799PMC
http://dx.doi.org/10.1126/sciadv.ads2364DOI Listing

Publication Analysis

Top Keywords

immune system
12
laboratory environment
8
laboratory mice
8
rewilding catalyzes
4
catalyzes maturation
4
maturation humoral
4
humoral immune
4
system inbred
4
mice
4
inbred mice
4

Similar Publications

CAR assembly line: Taking CAR T-cell manufacturing to the next level.

Best Pract Res Clin Haematol

December 2024

Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.

The widespread adoption of chimeric antigen receptor (CAR) T-cell therapy has been limited by complex, resource-intensive manufacturing processes. This review discusses the latest innovations aiming to improve and streamline CAR T-cell production across key steps like T-cell activation, genetic modification, expansion, and scaling. Promising techniques highlighted include generating CAR T cells from non-activated lymphocytes to retain a stem-like phenotype and function, non-viral gene transfer leveraging platforms like transposon and CRISPR, all-in-one fully automated bioreactors like the CliniMACS Prodigy and the Lonza Cocoon, rapid CAR T-cell manufacturing via abbreviating or eliminating ex vivo T-cell culture, implementing decentralized point-of-care automated manufacturing platforms, and optimizing centralized bioreactor infrastructure integrating end-to-end automation.

View Article and Find Full Text PDF

Research progress on critical viral protease inhibitors for coronaviruses and enteroviruses.

Bioorg Med Chem Lett

March 2025

State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China. Electronic address:

Viral infectious diseases have been seriously affecting human life and health. SARS-CoV-2 was the pathogen that caused Coronavirus Disease 2019 (COVID-19), and the impact of COVID-19 is still existing. Enterovirus 71 (EV71) is the primary pathogen of hand, foot, and mouth disease (HFMD), and no effective direct-acting antiviral drugs targeting EV71 has been approved yet.

View Article and Find Full Text PDF

The development of antibiotic resistance and inadequate immune response in chronic inflammation pose significant challenges in treating chronic osteomyelitis. As accepted non-antibiotic antimicrobial therapies, sonodynamic therapy (SDT) and photothermal therapy (PTT) are recognized for their effectiveness in eliminating bacteria and promoting tissue repair, rendering them promising therapeutic strategies for treating bacterial infections and preventing the emergence of drug-resistant bacteria. However, the antimicrobial action and efficacy in promoting tissue repair depend on the activation status of the host immune system.

View Article and Find Full Text PDF

Lactate: A key regulator of the immune response.

Immunity

March 2025

College of Medicine and Health, University of Birmingham, Birmingham, UK. Electronic address:

Lactate, the end product of both anaerobic and aerobic glycolysis in proliferating and growing cells-with the latter process known as the Warburg effect-is historically considered a mere waste product of cell and tissue metabolism. However, research over the past ten years has unveiled multifaceted functions of lactate that critically shape and impact cellular biology. Beyond serving as a fuel source, lactate is now known to influence gene expression through histone modification and to function as a signaling molecule that impacts a wide range of cellular activities.

View Article and Find Full Text PDF

Immo-bile-izing CD8 T cell anti-tumor immunity.

Immunity

March 2025

Blacktown Clinical School, Western Sydney University, Sydney, NSW 2148, Australia; Storr Liver Centre, Westmead Institute for Medical Research, Sydney, NSW 2145, Australia; Blacktown Mt Druitt Hospital, Sydney, NSW 2148, Australia. Electronic address:

Hepatocellular carcinoma is poorly responsive to immune checkpoint blockade. In a recent issue of Science, Varanasi et al. reveal how bile acids dampen anti-tumor CD8 T cell responses in the liver, contributing to cancer progression and poor immunotherapy outcomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!