Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The ability to rapidly estimate non-symbolic numerical quantities is a well-conserved sense across species with clear evolutionary advantages. However, despite its importance, this sense is surprisingly imprecise and biased, and a formal explanation for this seemingly irrational behavior remains unclear. We develop a unified normative theory of numerosity estimation that parsimoniously incorporates in a single framework information processing constraints alongside (i) Brownian diffusion noise to capture the effects of time exposure of sensory information, (ii) logarithmic encoding of numerosity representations, and (iii) optimal inference via Bayesian decoding. We show that for a given allowable biological capacity constraint our model naturally endogenizes time perception during noisy efficient encoding to predict the complete posterior distribution of numerosity estimates. This model accurately predicts many features of human numerosity estimation as a function of temporal exposure, indicating that humans can rapidly and efficiently sample numerosity information over time. Additionally, we demonstrate how our model fundamentally differs from a thermodynamically-inspired formalization of bounded rationality, where information processing is modeled as acting to shift away from default states. The mechanism we propose is the likely origin of a variety of numerical cognition patterns observed in humans and other animals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1371/journal.pcbi.1012790 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!