Highly aligned graphene aerogels (HAGA) with three-dimensional (3D) porous structures, excellent photothermal conversion ability and spectral absorption rate are considered to be a potential material to develop efficient and clean water production by utilizing solar energy solar energy. In this study, we employed molecular dynamics (MD) simulations to investigate the mechanisms of water and salt ion transport within HAGA. We also explored how the nanopore size of the network structure affects the movement behavior of water and salt ions. Improved water transport and salt ion blocking abilities were observed when the nanopore size of HAGA was smaller. Specifically, when the nanopore size was 0.83 nm, both the mobility of water and salt ions were significantly enhanced due to the single-chain phenomenon. In addition, the effects of the external temperature field on the transport process of water and salt ions within the nanoscale HAGA are also considered. It is found that the abilities of water and salt ions transport became drastic with the increase of temperature. Under the same temperature gradient, the water molecules flowed toward the heat temperature direction, however, the salt ions moved toward the cold temperature direction. These special phenomena can be explained by the thermal creep effect and the thermophoretic effect, respectively. Overall, these findings provide a more thorough understanding of the water and salt ions transport mechanisms of HAGA, which are significant for providing useful guidelines of HAGA design.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpcb.4c07732 | DOI Listing |
Small
March 2025
College of Textile and Clothing Engineering, National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215021, P. R. China.
Hydrogel-based solar interfacial evaporators, featuring various channels such as random, unidirectional, and radial array, are considered effective for seawater desalination owing to their porous structure, lower evaporation enthalpy, and controllable water transport capacity. However, each individual array structure has its own strengths and limitations, influencing water transportation, thermal management, and salt rejection. By combining the benefits of each array configuration into a single evaporator, the evaporation performance can be maximized.
View Article and Find Full Text PDFBiogeochemistry
March 2025
Institute of Marine and Coastal Science, Rutgers, The State University of New Jersey, New Brunswick, NJ USA.
Unlabelled: Alongside global climate change, many freshwater ecosystems are experiencing substantial shifts in the concentrations and compositions of salt ions coming from both land and sea. We synthesize a risk framework for anticipating how climate change and increasing salt pollution coming from both land and saltwater intrusion will trigger chain reactions extending from headwaters to tidal waters. Salt ions trigger 'chain reactions,' where chemical products from one biogeochemical reaction influence subsequent reactions and ecosystem responses.
View Article and Find Full Text PDFFoods
March 2025
Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro, Nam-Gu, Busan 48513, Republic of Korea.
This study aimed to optimize the three-dimensional (3D) printing parameters for surimi-based inks and investigate the effects of additives (starch, salt, and water) on the rheological and textural properties of surimi paste, aiming to develop a universal formulation applicable across three fish species: Alaska pollock, golden threadfin bream, and hairtail. By analyzing the hardness, adhesiveness, storage modulus (G'), and complex viscosity of the surimi inks, a formula was developed to identify the range of physical properties required for stable and precise 3D printing. The parameter windows to build a 3D structure with a 45° slope were as follows: hardness, 150-415 g/cm, and adhesion, -300 to -115 g.
View Article and Find Full Text PDFInt J Mol Sci
February 2025
Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
Long non-coding RNAs (lncRNAs) are involved in plant biotic and abiotic stress responses, in which Ca also plays a significant role. There is diversity in the regulation of different gene expressions by cytosolic Ca ([Ca]) and nucleosolic Ca ([Ca]). However, no studies have yet explored the interrelationship between lncRNAs and calcium signaling, nor how calcium signaling regulates the expression of lncRNAs.
View Article and Find Full Text PDFInt J Mol Sci
February 2025
Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal.
Soil salinity is one of the most severe impacts of climate change, negatively affecting plant growth and development. Seed germination and seedling emergence are among the most critical stages susceptible to salt stress, making it important to explore them to identify the most resilient accessions for crop yield improvement. Cowpea ( L.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!