The ability of Salmonella enterica subsp. enterica to persist and form biofilms on different surfaces can constitute a source of food contamination, being an issue of global concern. The objective of this study was to understand the biofilm formation profile of fourteen S. enterica strains among different serovars and sources and to evaluate the ability of essential oil (EO) components (carveol, citronellol, and citronellal) to disinfect the biofilms formed on stainless steel and polypropylene surfaces. All the strains were able to form biofilms with counts between 5.34 to 6.78 log CFU cm-2. Then, the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of EO components were evaluated on two selected strains. All compounds inhibited the growth of S. Typhimurium (strain 1; MIC = 800-1000 µg ml-1) and S. Enteritidis (strain 5; MIC = 400-1000 µg ml-1) and only carveol showed bactericidal activity against strains 1 and 5 (MBC=1200 µg ml-1). Biofilms were exposed to the EO components at 10 × MIC for 30 min and polypropylene surfaces were more difficult to disinfect showing reductions between 0.9 and < 1.2 log CFU cm-2. In general, the S. enterica biofilms demonstrated a significant tolerance to disinfection, demonstrating their high degree of recalcitrance on food processing surfaces.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/lambio/ovaf032 | DOI Listing |
Int J Mol Sci
February 2025
Servicio de Microbiología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain.
is an opportunistic pathogen with a multidrug-resistant profile that has become a critical threat to global public health. It is one of the main causes of severe nosocomial infections, including ventilator-associated pneumonia, chronic infections in patients with cystic fibrosis, and bloodstream infections in immunosuppressed individuals. Development of vaccines against is a major challenge owing to the high capacity of this bacterium to form biofilms, its wide arsenal of virulence factors (including secretion systems, lipopolysaccharides, and outer membrane proteins), and its ability to evade the host immune system.
View Article and Find Full Text PDFZhong Nan Da Xue Xue Bao Yi Xue Ban
October 2024
Department of Laboratory Medicine, Third Xiangya Hospital, Central South University, Changsha 410013, China.
Objectives: () adheres to the surface of medical devices, forming highly drug-resistant biofilms, which has made the development of novel antibacterial agents against and its biofilms a key research focus. By drug repurposing, this study aims to explore the combinational antimicrobial effects between pinaverium bromide (PVB), a -type calcium channel blocker, and oxacillin (OXA) against .
Methods: Clinical isolates of were collected from January to September 2022 at the Department of Clinical Laboratory of the Third Xiangya Hospital, Central South University.
Proteomics
March 2025
Department of Biotechnology, Delft University of Technology, Delft, the Netherlands.
Extracellular proteins are supposed to play crucial roles in the formation and structure of biofilms and aggregates. However, often little is known about these proteins, in particular for microbial communities. Here, we use two advanced metaproteomic approaches to study the extracellular proteome in a granular Candidatus Accumulibacter enrichment as a proxy for microbial communities that form solid microbial granules, such as those used in biological wastewater treatment.
View Article and Find Full Text PDFJ Oral Microbiol
March 2025
School of Medicine & Nursing, Huzhou University, Huzhou, China.
Background: Enterococcus faecalis (), the main pathogenic bacterium of root canal infection, can penetrate deep into the dentin tubule, form a biofilm, and resist host defense mechanisms, thereby increasing treatment complexity. Therefore, the key to the treatment of root canal infections is to completely kill the bacteria and prevent secondary infection. This review assesses advancements in traditional and novel disinfection methods targeting biofilm.
View Article and Find Full Text PDFHeliyon
February 2025
Departamento de Patobiología, Facultad de Veterinaria, Universidad de La República, Uruguay.
Bovine mastitis, a prevalent disease, is often attributed to staphylococci species. These microorganisms can express a diverse array of virulence genes and have the capability to form biofilms, establishing a robust defense against antimicrobials and host immune responses. In this study, we analyzed 191 spp.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!