Bis-porphyrin nanocages (M2BiCage, M = FeCl, Co, Zn) and their host-guest complexes with C60 and C70 were used to examine how molecular porosity and interactions with carbon nanomaterials affect the CO2 reduction activity of metalloporphyrin electrocatalysts. The cages were found to adsorb on carbon black to provide electrocatalytic inks with excellent accessibilities of the metal sites (~50 %) even at high metal loadings (2500 nmol cm-2), enabling good activity for reducing CO2 to CO. A complex of C70 bound inside (FeCl)2BiCage achieved high current densities for CO formation at low overpotentials (|jCO| > 7 mA cm-2, η = 320 mV; > 13.5 mA cm-2, η = 520 mV) with ≥ 95 % Faradaic efficiency (FECO), and Co2BiCage achieved high turnover frequencies (~1300 h-1, η = 520 mV) with 90 % FECO. In general, blocking the pore with C60 or C70 improved the catalytic performance of (FeCl)2BiCage and had only small effects on Co2BiCage, indicating that the good catalytic properties of the cages cannot be attributed to their internal pores. Neither enhanced electron transfer rates nor metal-fullerene interactions appear to underlie the ability of C60/C70 to improve the performance of (FeCl)2BiCage, in contrast to effects often proposed for other carbon nanosupports.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202504630DOI Listing

Publication Analysis

Top Keywords

co2 reduction
8
c60 c70
8
achieved high
8
performance fecl2bicage
8
host-guest chemistry
4
chemistry examine
4
examine effects
4
effects porosity
4
porosity catalyst-support
4
catalyst-support interactions
4

Similar Publications

Tungsten Oxide/g-CN Heterostructures: Composition, Structure, and Photocatalytic Applications.

Langmuir

March 2025

School of Material Science and Engineering, University of Jinan, Jinan, 250022, PR China.

The construction of heterostructures promotes extending the light adsorption range of graphitic carbon nitride (g-CN) materials, improving the photogenerated charge carrier separation/transfer efficiency for attaining much enhanced performances. Because defective tungsten oxide (WO) materials possess rich composition/morphology and an extended light response in the near-infrared region, WO is a quite popular nanocomponent for modifying g-CN, forming heterostructures that can be used for various photocatalytic applications involving water splitting, CO reduction, NO removal, HO generation, and related chemical to fuel conversion reactions. In this review, important aspects of WO/g-CN heterostructure photocatalysts are reviewed to provide paradigms for composition adjustment, structural design, and photocatalytic applications of these materials.

View Article and Find Full Text PDF

Tuning transition metal spin states potentially offers a powerful means to control electrocatalyst activity. However, implementing such a strategy in electrochemical CO reduction (COR) is challenging since rational design rules have yet to be elucidated. Here we show how the addition of P dopants to a ferromagnetic element (Fe, Co, and Ni) single-atom catalyst (SAC) can shift its spin state.

View Article and Find Full Text PDF

Unlabelled: Alongside global climate change, many freshwater ecosystems are experiencing substantial shifts in the concentrations and compositions of salt ions coming from both land and sea. We synthesize a risk framework for anticipating how climate change and increasing salt pollution coming from both land and saltwater intrusion will trigger chain reactions extending from headwaters to tidal waters. Salt ions trigger 'chain reactions,' where chemical products from one biogeochemical reaction influence subsequent reactions and ecosystem responses.

View Article and Find Full Text PDF

Although an electrochemical CO2 reduction reaction (ECO2RR) can provide an ideal route to produce CH4, its selectivity is significantly hindered due to kinetically complex steps. To improve CH4 selectivity, this study focuses on microenvironmental engineering using an additive of ethylene diamine tetraacetate (EDTA) in electrolyte. EDTA interacts with the Cu catalyst, altering its electronic structure and promoting CO2 activation, in addition, it forms additional hydrogen bonding with key intermediates of *CO and *CHO leading to their stabilization.

View Article and Find Full Text PDF

Plasmonic-Promoted Formation of Surface Adsorbed Stochastic CO during Electrochemical CO and CO Reduction on Cu at Extreme Low Overpotentials.

J Am Chem Soc

March 2025

Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310030, Zhejiang, China.

Reducing the formation overpotential of key reaction intermediates represents a major challenge in developing broad electrocatalytic reactions. Recent vibrational spectroscopic studies of electrochemical CO or CO reduction reaction (CORR) characterized an interesting formation of stochastic CO (CO) intermediate with negligible energy losses under certain circumstances. Yet, the precise formation conditions and mechanisms remain unclear, hindering the correct understanding of related spectroscopic results and utilization of these effects to develop the CORR and other electrocatalytic reactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!