Stem rot disease (Agroathelia rolfsii) biocontrol is an environmentally safe alternative that could potentially decrease disease severity and limit plant and yield losses. In the present investigation, 11 actinomycetes isolates, recovered from disease-suppressive composts, were tested as whole cell suspensions and cell-free culture filtrates for their ability to suppress tomato stem rot and to stimulate plant growth. Five isolates (namely A5-3, A2-4, A3-4, A4-4 and A5-4), applied as cell suspensions, were found to be the most effective in suppressing disease severity by 37.5-56.2% compared to the untreated control and 25-56.2% using their cell-free culture filtrates. The in vitro antifungal activity of isolates tested and their filtrates were estimated at 58.8-88% and 59-91.3% decrease in fungus mycelial growth, respectively. As for their growth-promoting ability, tomato plants treated with A5-3, A2-4, A3-4, A4-4 and A5-4 isolates were 20-89.1% and 10.3-79% higher than A. rolfsii-inoculated and pathogen-free controls, respectively. Inoculated and uninoculated plants treated with filtrates showed significant increments in their growth parameters by 18.2-91.9% and 15.3-93.4% over control, respectively. The most bioactive isolates against target pathogen were affiliated, based on 16 S rDNA gene sequencing, to Streptomyces, Saccharomonospora and Micromonospora genera. All these isolates were shown able to produce indole-3-acetic acid. Streptomyces sp. (A5-3) and Streptomyces sp. (A5-4) displayed chitinase, protease and lipase activities together with phosphate solubilization and nitrogen-fixing abilities. Streptomyces sp. (A5-3) displayed the greatest amylolytic activity and ability to solubilize zinc and to produce siderophores and hydrogen cyanide. This investigation demonstrated that actinomycetes recovered from disease-suppressive composts can be explored as potential sources of bio-active compounds with antifungal and bio-fertilizing abilities useful for the improvement of tomato growth and health.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s42770-025-01647-4 | DOI Listing |
Mycobiology
March 2025
Department of Biological Science, Kunsan National University, Gunsan, South Korea.
Root and stem rot, caused by Pythiales (Oomycota), poses a significant threat to chrysanthemum ( spp.) cultivation worldwide. In Korea, previously undocumented rot and blight symptoms were observed on stems, roots, and leaves of (=), a chrysanthemum species with high global production.
View Article and Find Full Text PDFPlant Dis
March 2025
Beijing Academy of Agriculture and Forestry Sciences, Institute of plant protection, No. 9 of ShuGuangHuaYuan ZhongLu, Haidian District, Beijing 100097, China., Beijing, China, 100097;
Tomato (Solanum lycopersicum) is widely grown worldwide, ranking first among vegetable crops. Root diseases of tomatoes can cause serious yield losses. In June 2023 and 2024, tomato root rot symptoms were observed in the greenhouse with 70%-90% incidence approximate number of plants (N=210) in Beizhen City (121°47 ' 30 ''E, 41°35' 45 ''N), Liaoning Province, China.
View Article and Find Full Text PDFPlant Dis
March 2025
HNU, Longping Branch Changsha, Changsha, Hunan, China.
Peppers (Capsicum annuum L.) are among the most widely consumed vegetable globally and cultivated in large areas in China (Zhou and Zhou 2021). In December 2023, pepper pith necrosis was discovered in a field located in Haiwan Town, Haitang District, Sanya City, Hainan, China (109.
View Article and Find Full Text PDFHortic Res
April 2025
College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
Pear ring rot disease () is a significant threat to the healthy development of the pear industry. Recent research has identified the functional role of long non-coding RNAs (lncRNAs) in various biological processes of plants. The role of lncRNAs in the pear defense response remains unknown.
View Article and Find Full Text PDFBraz J Microbiol
March 2025
LR21AGR03-Production and Protection for a Sustainable Horticulture (2PHD), Regional Research Centre on Horticulture and Organic Agriculture, IRESA- University of Sousse, Chott-Mariem, 4042, Tunisia.
Stem rot disease (Agroathelia rolfsii) biocontrol is an environmentally safe alternative that could potentially decrease disease severity and limit plant and yield losses. In the present investigation, 11 actinomycetes isolates, recovered from disease-suppressive composts, were tested as whole cell suspensions and cell-free culture filtrates for their ability to suppress tomato stem rot and to stimulate plant growth. Five isolates (namely A5-3, A2-4, A3-4, A4-4 and A5-4), applied as cell suspensions, were found to be the most effective in suppressing disease severity by 37.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!