The present study explores the metabolic profiling and molecular wound-healing mechanisms of Echinacea purpurea (L.) Moench (EP) flowers aqueous (AE) and ethanol (EE) extracts in an excision wound-healing model. Metabolic profiling of the extracts was investigated using UHPLC-ESI-TOF-MS and molecular networking. Antioxidant activity was carried out using the DPPH (1, 1-diphenyl-2-picrylhydrazyl) radical scavenging method and FRAP (ferric reducing antioxidant power). Carboxy methylcellulose gels of 5 and 10% of both aqueous (AE) and ethanol (EE) extracts were prepared. The wounds were explored macroscopically, histologically, and immunohistochemically. The UHPLC-ESI-TOF-MS method enabled the identification of 3 organic acids, 14 phenolic acids, 3 phenylethanoid glycosides, and 11 flavonoids from EP extracts. EE had significant antioxidant activity compared to AE. The EP treated wounds healed faster. The EE succeeded in improving healing properties and controlling the inflammatory response by reducing IL-6 and increasing IL-10 expression and enhancing angiogenesis and remodeling via increased NF-κB, TGF-β, VEGF, CD31 expression and α-SMA and collagen deposition. It is worth mentioning that the EE groups also showed improvement in the histopathological examination in a dose-dependent manner. The effectiveness of EE in wound-healing may be attributed to its higher content of polyphenols which also made the antioxidant potential of the EE and its capacity to donate electrons higher than that of AE. This study scientifically enables the understanding of the molecular mechanisms Echinacea purpurea extract in wound healing via modulating skin inflammatory response and indicates the potential usefulness of EP ethanol extract for wound healing.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10787-025-01681-6DOI Listing

Publication Analysis

Top Keywords

wound healing
12
metabolic profiling
8
mechanisms echinacea purpurea
8
aqueous ethanol
8
ethanol extracts
8
antioxidant activity
8
inflammatory response
8
extract wound
8
targeting tgf-β/vegf/nf-κb
4
tgf-β/vegf/nf-κb inflammatory
4

Similar Publications

Multidrug resistance (MDR) infectious wounds are a major concern due to drug resistance, leading to increased patient morbidity. Lichenysin (LCN), a lipopeptide and biosurfactant obtained from certain strains of , has demonstrated an excellent antimicrobial property. The present study focuses on the fabrication and comprehensive evaluation of LCN-incorporated poly(vinyl alcohol) (PVA)/polycaprolactone (PCL)-based nanofiber scaffolds using an electrospinning technique as a potential wound healing biomaterial for the treatment of MDR infectious wounds in diabetic rats.

View Article and Find Full Text PDF

This study aimed to perform chemical characterization of black raspberry seed oil (Rubus occidentalis L., Rosaceae) from Serbia in terms of fatty acids and tocols composition, total carotenoid content, as well as to investigate its antioxidant/antimicrobial activities and in vitro wound-healing potential. GC/MS analysis revealed that linoleic (39.

View Article and Find Full Text PDF

The current research emphasis is on the development of wound dressings that can inhibit bacterial infections and facilitate the treatment of complex wound healing processes. In this study, nanofibrous mats of polyvinyl alcohol/chitosan/ZIF-67(PVA/Cs/ZIF-67) were prepared using an electrospinning technique, to investigate their antibacterial and regenerative properties in a rat model of full-thickness skin wounds. ZIF-67 nanoparticles, with an average size of approximately 373.

View Article and Find Full Text PDF

Electrospun pectin nanofibers have emerged as a transformative advancement in biomaterials, offering remarkable potential across diverse biomedical and industrial applications. This review explores the synthesis, optimization, and versatile applications of electrospun pectin nanofibers, highlighting their unique properties, including biocompatibility, biodegradability, and adaptability for functionalization. Pectin's structural diversity, coupled with its ability to form hydrogels and interact with biological systems, makes it a promising candidate for wound healing, drug delivery, tissue engineering, and smart packaging.

View Article and Find Full Text PDF

Pulmonary fibrosis encompasses different chronic interstitial lung diseases, and the predominant form, idiopathic pulmonary fibrosis, remains to have a poor prognosis despite 2 approved therapies. Although the exact pathobiological mechanisms are still incompletely understood, epithelial injury and aberrant wound healing responses contribute to the gradual change in lung architecture and functional impairment. Lysophosphatidic acid (LPA)-induced lysophosphatidic receptor 1 (LPA1) signaling was proposed to be a driver of lung fibrosis, and LPA1 antagonists have shown promising antifibrotic profiles in early clinical development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!