Fetal growth restriction (FGR) affects 5% to 10% of all pregnancies in developed countries and is the second most leading cause of perinatal mortality and morbidity. Life-long consequences of FGR range from learning and behavioral issues to cerebral palsy. To support the newborn brain following FGR, timely and accessible neuroprotection strategies are needed. Curcumin-loaded polymeric nanoparticles, which have been widely explored for the treatment of cancer, neurological disorders, and bacterial infections, have the potential to prevent and mitigate pathogenic inflammatory processes in the FGR brain. Curcumin is a hydrophobic molecule with poor aqueous solubility and therefore has been incorporated into nanoparticles to improve solubility and delivery. However, curcumin loading in many nanoparticles can be limited to 10% by weight or lower. Here, we first optimize the formulation process of curcumin-loaded polymeric nanoparticles to find a tunable, reproducible, and stable formulation with high curcumin loading and encapsulation efficiency. We establish a curcumin formulation with 39% curcumin loading and > 95% curcumin encapsulation efficiency. Using this formulation, we assessed the biodistribution of polymeric nanoparticles in FGR piglets and normally grown (NG) piglets following different administration routes and evaluated brain cellular uptake. We show a significant amount of nanoparticle accumulation in the brain parenchyma of neonatal piglets as early as 4 h after intranasal administration. Nanoparticles colocalized in microglia, a therapeutic target of interest in FGR brain injury. This study demonstrates the potential of curcumin-loaded nanoparticles to treat neuroinflammation associated with FGR in the newborn.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13346-025-01830-yDOI Listing

Publication Analysis

Top Keywords

polymeric nanoparticles
12
curcumin loading
12
fetal growth
8
curcumin-loaded polymeric
8
fgr brain
8
encapsulation efficiency
8
fgr
7
nanoparticles
7
brain
6
curcumin
6

Similar Publications

This study explores the development of a photo-responsive bicomponent electrospun platform and its drug delivery capabilities. This platform is composed of two polymers of poly(lactide-co-glycolide) (PLGA) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). Then, the platform is decorated with plasmonic gold nanostars (Au NSs) that are capable of on-demand drug release.

View Article and Find Full Text PDF

Cancer is a leading cause of death and life-threatening disease globally. It is connected to persistent tissue damage and unregulated cellular proliferation. In females, breast cancer plays a crucial role in death rates.

View Article and Find Full Text PDF

Decoding in-plane orientation in cellulose nanopapers hybridized with tailored polymeric nanoparticles.

Nanoscale

March 2025

KTH Royal Institute of Technology, Department of Fiber and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Teknikringen 56, SE-100 44 Stockholm, Sweden.

Biobased cellulose nanofibrils (CNFs) constitute important building blocks for biomimetic, nanostructured materials, and considerable potential exists in their hybridization with tailorable polymeric nanoparticles. CNFs naturally assemble into oriented, fibrillar structures in their cross-section. This work shows that polymeric nanoparticle additives have the potential to increase or decrease orientation of these cellulose structures, which allows the control of bulk mechanical properties.

View Article and Find Full Text PDF

The advent of CRISPR/Cas gene-editing technology has revolutionized molecular biology, offering unprecedented precision and potential in treating genetic disorders, cancers, and other complex diseases. However, for CRISPR/Cas to be truly effective in clinical settings, one of the most significant challenges lies in the delivery of the CRISPR components, including guide RNA (gRNA) and Cas protein, into specific cells or tissues. Safe, targeted, and efficient delivery remains a critical bottleneck.

View Article and Find Full Text PDF

Designing polymersomes with surface-integrated nanoparticles through hierarchical phase separation.

Nat Commun

March 2025

Bio-Organic Chemistry, Department of Chemical Engineering and Chemistry, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands.

Polymersomes with surface-integrated nanoparticles, in which a smaller sphere is attached to a larger capsule, are typically formed through complex processes like membrane deformation, polymerization, or membrane functionalization. This complexity restricts facile application of this unusual topology, for example in drug delivery or nanomotor science. Our study introduces a robust method for crafting polymersomes with surface-integrated nanoparticles using a hierarchical phase separation approach.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!