USP5 Deletion Inhibits KD Serum Induced-Human Coronary Artery Endothelial Cell Dysfunction by Regulating the NFATC1/TLR4-Mediated NF-κB Signaling Pathway in Kawasaki Disease.

Inflammation

Department of Pediatrics, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, No. 79 Kangning Road, Xiangzhou District, Zhuhai City, 519000, Guangdong, China.

Published: March 2025

Kawasaki disease (KD) is an acute febrile illness characterized by systemic vasculitis, especially in coronary arteries. Previous studies have indicated that nuclear factor of activated T cells, cytoplasmic 1 (NFATC1, also known as NFAT2) plays a crucial role in the pathogenesis of KD. However, the molecular mechanism of NFATC1 involved in KD is poorly defined. Human coronary artery endothelial cells (HCAECs) were treated with 15% serum from KD patients to mimic the inflammatory injury model in vitro. NFATC1 mRNA level was determined using real-time quantitative polymerase chain reaction (RT-qPCR). NFATC1, Bax, Bcl-2, Ubiquitin-specific peptidase 5 (USP5), Toll-like receptor 4 (TLR4), p-P65, P65, p-IκBα, and IκBα protein levels were determined by Western blot. Cell viability, proliferation, and apoptosis were assessed using the Cell Counting Kit-8 (CCK-8) assay, 5-ethynyl-2'-deoxyuridine (EdU) assay, and flow cytometry. Interleukin-1β (IL-1β) and tumor necrosis factor α (TNF-α) levels were analyzed using ELISA. ROS and SOD levels were detected using special assay kits. After ubibrowser database analysis, the interaction between USP5 and NFATC1 was verified using Co-immunoprecipitation (CoIP) assay. Meanwhile, the possible interaction between NFATC1 and TLR4 was predicted by STRING databases and identified using CoIP assay. NFATC1 expression was increased in KD patients and KD serum-treated HCAECs. KD serum-mediated HCAEC viability and proliferation inhibition, apoptosis, inflammatory response, and oxidative stress promotion. Furthermore, blocking NFATC1 relieved KD serum-evoked HCAEC injury in vitro. Mechanistically, USP5 triggered the deubiquitination of NFATC1 and prevented its degradation. NFATC1 interacted with TLR4 to regulate its expression in HCAECs. Besides, KD serum activated the nuclear factor kappa-B (NF-κB) signaling pathway by regulating the USP5/NFATC1/TLR4 axis in HCAECs. USP5 deficiency mitigated KD serum-induced inflammation and injury in HCAECs through targeting NFATC1 and TLR4-mediated NF-κB signaling, providing a possible therapeutic target for KD treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10753-025-02276-7DOI Listing

Publication Analysis

Top Keywords

nf-κb signaling
12
nfatc1
11
coronary artery
8
artery endothelial
8
signaling pathway
8
kawasaki disease
8
nuclear factor
8
viability proliferation
8
coip assay
8
usp5
5

Similar Publications

Semiautomated Production of Cell-Free Biosensors.

ACS Synth Biol

March 2025

Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States.

Cell-free synthetic biology biosensors have potential as effective diagnostic technologies for the detection of chemical compounds, such as toxins and human health biomarkers. They have several advantages over conventional laboratory-based diagnostic approaches, including the ability to be assembled, freeze-dried, distributed, and then used at the point of need. This makes them an attractive platform for cheap and rapid chemical detection across the globe.

View Article and Find Full Text PDF

Purpose: It is widely acknowledged that parental input plays an important role in typical language development. Less is known about the input provided to children with (suspected) developmental language disorder (DLD) or those at risk for DLD. These children may not benefit from parental input in the same way as their typically developing peers, and different aspects of parental input may be more important for them.

View Article and Find Full Text PDF

Detoxifying reactive oxygen species (ROS) that accumulate under saline conditions is crucial for plant salt tolerance. The Salt Overly Sensitive (SOS) pathway functions upstream, while flavonoids act downstream, in ROS scavenging under salt stress. However, the potential crosstalk between the SOS pathway and flavonoids in regulating salt stress responses and the associated mechanisms remain largely unexplored.

View Article and Find Full Text PDF

It is known that inhibition of the endoplasmic reticulum transmembrane signaling protein (ERN1) suppresses the glioblastoma cells proliferation. The present study aims to investigate the impact of inhibition of ERN1 endoribonuclease and protein kinase activities on the , , and gene expression in U87MG glioblastoma cells with an intent to reveal the role of ERN1 signaling in the regulation of expression of these genes. The U87MG glioblastoma cells with inhibited ERN1 endoribonuclease (dnrERN1) or both enzymatic activities of ERN1 (endoribonuclease and protein kinase; dnERN1) were used.

View Article and Find Full Text PDF

For the effective growth of malignant tumors, including glioblastoma, the necessary factors involve endoplasmic reticulum (ER) stress, hypoxia, and the availability of nutrients, particularly glucose. The ER degradation enhancing alpha-mannosidase like protein 1 (EDEM1) is involved in ER-associated degradation (ERAD) targeting misfolded glycoproteins for degradation in an N-glycan-independent manner. EDEM1 was also identified as a new modulator of insulin synthesis and secretion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!