Objective: The objective of this study is to investigate the value of radiomics features and deep learning features based on positron emission tomography/computed tomography (PET/CT) in predicting perineural invasion (PNI) in rectal cancer.
Methods: We retrospectively collected 120 rectal cancer (56 PNI-positive patients 64 PNI-negative patients) patients with preoperative F-FDG PET/CT examination and randomly divided them into training and validation sets at a 7:3 ratio. We also collected 31 rectal cancer patients from two other hospitals as an independent external validation set. χ2 test and binary logistic regression were used to analyze PET metabolic parameters. PET/CT images were utilized to extract radiomics features and deep learning features. The Mann-Whitney U test and LASSO were employed to select valuable features. Metabolic parameter, radiomics, deep learning and combined models were constructed. ROC curves were generated to evaluate the performance of models.
Results: The results indicate that metabolic tumor volume (MTV) is correlated with PNI (P = 0.001). In the training set and validation set, the AUC values of the metabolic parameter model were 0.673 (95%CI: 0.572-0.773), 0.748 (95%CI: 0.599-0.896). We selected 16 radiomics features and 17 deep learning features as valuable factors for predicting PNI. The AUC values of radiomics model and deep learning model were 0.768 (95%CI: 0.667-0.868) and 0.860 (95%CI: 0.780-0.940) in the training set. And the AUC values in the validation set were 0.803 (95%CI: 0.656-0.950) and 0.854 (95% CI 0.721-0.987). Finally, the combined model exhibited AUCs of 0.893 (95%CI: 0.825-0.961) in the training set and 0.883 (95%CI: 0.775-0.990) in the validation set. In the external validation set, the combined model achieved an AUC of 0.829 (95% CI: 0.674-0.984), outperforming each individual model. The decision curve analysis of these models indicated that using the combined model to guide treatment provided a substantial net benefit.
Conclusions: This combined model established by integrating PET metabolic parameters, radiomics features, and deep learning features can accurately predict the PNI in rectal cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00261-025-04833-y | DOI Listing |
ACS Nano
March 2025
School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
The self-assemblies of topological complex block copolymers, especially the AB type miktoarm star ones, are fascinating topics in the soft matter field, which represent typical self-assembly behaviors analogous to those of biological membranes. However, their diverse topological asymmetries and versatile spontaneous curvatures result in rather complex phase separations that deviate significantly from the common mechanisms. Thus, numerous trial-and-error experiments with tremendous parameter space and intricate relationships are needed to study their assemblies.
View Article and Find Full Text PDFPlant Biotechnol J
March 2025
National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
The dissection of genetic architecture for rice root system is largely dependent on phenotyping techniques, and high-throughput root phenotyping poses a great challenge. In this study, we established a cost-effective root phenotyping platform capable of analysing 1680 root samples within 2 h. To efficiently process a large number of root images, we developed the root phenotyping toolbox (RPT) with an enhanced SegFormer algorithm and used it for root segmentation and root phenotypic traits.
View Article and Find Full Text PDFGastroenterology
March 2025
APC Microbiome Ireland, College of Medicine and Health, University College Cork, Cork, Ireland.
Inflammatory bowel disease (IBD) is marked by significant clinical heterogeneity, posing challenges for accurate diagnosis and personalized treatment strategies. Conventional approaches, such as endoscopy and histology, often fail to adequately and accurately predict medium and long-term outcomes, leading to suboptimal patient management. Artificial intelligence (AI) is emerging as a transformative force enabling standardized, accurate, and timely disease assessment and outcome prediction, including therapeutic response.
View Article and Find Full Text PDFArtif Intell Med
March 2025
Department of Advanced Computing Sciences, Maastricht University, The Netherlands. Electronic address:
Electrocardiographic imaging (ECGI) aims to noninvasively estimate heart surface potentials starting from body surface potentials. This is classically based on geometric information on the torso and the heart from imaging, which complicates clinical application. In this study, we aim to develop a deep learning framework to estimate heart surface potentials solely from body surface potentials, enabling wider clinical use.
View Article and Find Full Text PDFComput Biol Chem
March 2025
Scientific Research Management Department, Shanghai University, Shanghai, 200444, China. Electronic address:
Drug-target affinity prediction is a fundamental task in the field of drug discovery. Extracting and integrating structural information from proteins effectively is crucial to enhance the accuracy and generalization of prediction, which remains a substantial challenge. This paper proposes a pocket-based multimodal deep learning model named PocketDTA for drug-target affinity prediction, based on the principle of "structure determines function".
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!