Purified alkane monooxygenase (AlkB) from (FtAlkB) catalyzes the defluorination of 1-fluorooctane, producing octanal, which is partially reduced under the reaction conditions to generate 1-octanol. This reaction occurs preferentially at the monofluorinated methyl group, with only a minor amount of oxidation at the nonfluorinated end of the molecule. The dehalogenation chemistry is specific to 1-fluorooctane, as neither 1-chlorooctane or 1-bromooctane are dehalogenated to an appreciable extent. Furthermore, cells containing the structurally related AlkB (PpAlkB) along with the full set of genes required for alkane metabolism, utilize 1-fluorooctane as their sole source of carbon with growth rates comparable to those for cells grown with octane.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.5c00386DOI Listing

Publication Analysis

Top Keywords

alkane monooxygenase
8
monooxygenase ftalkb
4
ftalkb alkyl
4
alkyl fluoride
4
fluoride dehalogenase
4
dehalogenase purified
4
purified alkane
4
monooxygenase alkb
4
alkb ftalkb
4
ftalkb catalyzes
4

Similar Publications

Purified alkane monooxygenase (AlkB) from (FtAlkB) catalyzes the defluorination of 1-fluorooctane, producing octanal, which is partially reduced under the reaction conditions to generate 1-octanol. This reaction occurs preferentially at the monofluorinated methyl group, with only a minor amount of oxidation at the nonfluorinated end of the molecule. The dehalogenation chemistry is specific to 1-fluorooctane, as neither 1-chlorooctane or 1-bromooctane are dehalogenated to an appreciable extent.

View Article and Find Full Text PDF

Alkane-oxidizing bacteria play a crucial role in the global carbon cycle. species are well-known hydrocarbon degraders, distinguished by the harboring of multiple homologs of AlkB family alkane monooxygenases. Although different types of rhodococcal AlkBs have been described, the overall picture of their diversity remains unclear, leaving gaps in the current classification.

View Article and Find Full Text PDF

Lemon grass, formally identified as Cymbopogon citratus, is a plant that belongs to the Poaceae family. The present work aimed to examine the chemical composition by GC/MS analysis and assess the biological potential of C. citratus volatile oil and n-hexane extract.

View Article and Find Full Text PDF

Coastal ecosystems are increasingly exposed to high nutrient loads and salinity intrusions due to rising seawater levels. Microbial communities, key drivers of elemental cycles in these ecosystems, consequently, experience fluctuations. This study investigates how the methane-rich coastal sediment microbiome from the Stockholm Archipelago copes with high and low nitrogen and sulfide loading by simulating coastal conditions in two methane-saturated anoxic brackish bioreactors.

View Article and Find Full Text PDF

Crude oil contamination is a major threat to both the environment and human health. Acinetobacter haemolyticus strain JS-1 was isolated from oil-contaminated soil in Jiangsu Oilfield, China, which exhibits exceptional biodegradation capabilities for crude oil and p-hydroxybenzoic acid (PHBA). This strain can degrade 70-80 % of crude oil at concentrations of 10-20 g/L within 15 days at 30 °C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!