Bioinformatics analysis of differentially expressed genes in hyperplastic scars using microarray data.

Nucleosides Nucleotides Nucleic Acids

Aesthetic Medicine Department, Quzhou People's Hospital, Quzhou, Zhejiang, China.

Published: March 2025

Objective: Using DNA microarray technology, we compared the differences in mRNA expression profiles between human hypertrophic scars (HTS) and normal skin tissues. Analyzing the differential genes in bioinformatics, to explore the pathogenesis of HTS at the molecular level, and to provide new targets for clinical treatment of HTS.

Methods: Three HTS samples and their adjacent normal skin samples were collected. The extraction of total RNA was performed for cDNA microarray analysis. The screening of differentially expressed genes was carried out by using Genespring 10.0 software, and cluster analysis was performed between HTS and normal skin groups within the group, and Gene Ontology (GO) and biological pathway analysis were performed for differentially expressed genes by using DAVID Bioinformatics Resources 6.7.

Results: In the 3 HTS samples, 3832 mRNAs overlapped in 3 HTS samples with more than 2-fold changes, 1920 mRNAs with more than 2-fold up-regulation, 1912 mRNAs with more than 2-fold down-regulation, 18 mRNAs with more than 5-fold up-regulation, and 29 mRNAs with more than 5-fold down-regulation. The results of the GO analysis showed that CDKN1C, CDKN2A, CTNNA3, COL6A3, HOXB4 and other differentially expressed genes are closely related to biological processes such as cell cycle, cell proliferation, and cell adhesion. The kegg pathway enrichment analysis showed that TGF-β1, CDKN1C, CDKN2A, CDC14A, ITGB6, EGF and other differentially expressed genes are mainly involved in the formation of adhesion plaques, β transforming factor signaling pathways, cell cycle signaling pathways, P53 signaling pathways, and tumor-related signaling pathways.

Conclusion: The mRNA expression profile of human HTS samples showed significant changes compared to normal skin samples. TGF-β1, SMAD2, SMAD7, BAX, IGF2, COL1A1, COL1A2, MMPs, CDC14A, ITGB6, EGF, CDKN1C, CDKN2A, CTNNA3, HOXA3 and other related genes involved in biological processes, molecular functions, signaling pathways may be closely related to the occurrence and development of hypertrophic scars.

Download full-text PDF

Source
http://dx.doi.org/10.1080/15257770.2025.2466427DOI Listing

Publication Analysis

Top Keywords

differentially expressed
20
expressed genes
20
normal skin
16
hts samples
16
signaling pathways
16
cdkn1c cdkn2a
12
mrna expression
8
hypertrophic scars
8
hts normal
8
skin samples
8

Similar Publications

Background: Early diagnosis and intervention are essential for improving the prognosis and survival of gastric cancer (GC) patients. However, specific biomarkers for early GC diagnosis are still unavailable.

Methods: Data-independent acquisition (DIA) proteomics was employed to identify differentially expressed proteins (DEPs) between GC and adjacent non-tumor tissues.

View Article and Find Full Text PDF

Background: Atrial fibrillation (AF) and heart failure (HF) frequently coexist and mutually influence each other. The association between AF and the subtype of HF, Ischaemic heart failure (IHF), remains insufficiently described, despite their high prevalence. Hence, comprehending their underlying pathophysiological mechanisms and identifying new therapeutic targets are urgently needed.

View Article and Find Full Text PDF

Solid tumors present a formidable challenge in oncology, necessitating innovative approaches to improve therapeutic outcomes. Proteoglycans, multifaceted molecules within the tumor microenvironment, have garnered attention due to their diverse roles in cancer progression. Their unique ability to interact with specific membrane receptors, growth factors, and cytokines provides a promising avenue for the development of recombinant proteoglycan-based therapies that could enhance the precision and efficacy of cancer treatment.

View Article and Find Full Text PDF

Introduction: Melanoma, a highly aggressive form of skin cancer, and Parkinson's disease (PD), a progressive neurodegenerative disorder, have been epidemiologically linked, showing a positive association that suggests a shared etiology. This association implies that individuals with one condition may have an increased risk of developing the other. However, the specific molecular mechanisms underlying this relationship remain unclear.

View Article and Find Full Text PDF

Pear ring rot disease () is a significant threat to the healthy development of the pear industry. Recent research has identified the functional role of long non-coding RNAs (lncRNAs) in various biological processes of plants. The role of lncRNAs in the pear defense response remains unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!