Kinetic studies and chemical modifications were performed on purified human liver alpha-L-fucosidase (alpha-L-fucoside fucohydrolase, EC 3.2.1.51) in an attempt to identify the catalytic residues at the active site. Plots of log Vmax vs. pH (computer-fitted to a theoretical model) displayed two apparent pK values, of approx. 3.8 and 7.3. The temperature dependence of these pK values yielded heats of ionization of 3 and 0 kcal/mol from Van't Hoff plots for the lower and higher pK values, respectively. Reaction of alpha-L-fucosidase with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide and sodium p-(hydroxymercuri)benzoate resulted in complete inactivation of the enzyme. Other nonspecific inactivators had little or no effect on enzyme activity. These results suggest two carboxyl groups whose ionization state is important to activity, a non-active-site cysteine residue important to activity, and at least one active-site carboxyl group.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0167-4838(85)90237-7DOI Listing

Publication Analysis

Top Keywords

catalytic residues
8
residues active
8
active site
8
human liver
8
liver alpha-l-fucosidase
8
studies catalytic
4
site human
4
alpha-l-fucosidase kinetic
4
kinetic studies
4
studies chemical
4

Similar Publications

Unearthing novel and multifunctional peptides in peptidome of fermented chhurpi cheese of Indian Himalayan region.

Food Res Int

February 2025

National Agri-Food and Biomanufacturing Institute, SAS Nagar, Mohali, India; Institute of Bioresources and Sustainable Development, Regional Centre, Sikkim, India. Electronic address:

Fermented foods of the Indian Himalaya are unexplored functional resources with high nutritional potential. Chhurpi cheese, fermented by defined native proteolytic lactic acid bacteria of Sikkim was assessed for ACE inhibitory, HOCl reducing, and MPO inhibitory, activity across varying stages of gastrointestinal (GI) digestion. The enhanced bioactivity of Lactobacillus delbrueckii WS4 chhurpi was associated with the generation of bioactive and multifunctional peptides during fermentation and GI digestion.

View Article and Find Full Text PDF

The reaction mechanisms of ethylene oxide and propylene oxide with food Simulants: Based on experiments and computational analysis.

Food Res Int

February 2025

College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai 201306, China. Electronic address:

Ethylene oxide (EO) and propylene oxide (PO) are widely used as sterilizing agents in the food industry. However, their residues in food packaging can migrate into food and react with it, affecting the accuracy of residue detection in food. This study aims to explore the reaction mechanisms between EO and PO and aqueous food simulants using both experimental and computational methods.

View Article and Find Full Text PDF

Protein catalysis and allostery require the atomic-level orchestration and motion of residues and ligand, solvent and protein effector molecules. However, the ability to design protein activity through precise protein-solvent cooperative interactions has not yet been demonstrated. Here we report the design of 14 membrane receptors that catalyse G protein nucleotide exchange through diverse engineered allosteric pathways mediated by cooperative networks of intraprotein, protein-ligand and -solvent molecule interactions.

View Article and Find Full Text PDF

Studies presenting visible-light-induced desulfurization of peptides containing a cysteine residue have been carried out. This transformation driven by light-emitting-diode-type light proceeds with high efficiency in an aqueous solution at room temperature and involves the use of a catalytic amount of photosensitizer, Rose Bengal. The procedure has been tested on model synthetic peptides, lysozyme C and α-crystallin, and successfully applied to a one-pot native chemical ligation (NCL)-desulfurization protocol.

View Article and Find Full Text PDF

Homology modeling and thermostability enhancement of PETase via hydrophobic interactions.

J Biomol Struct Dyn

January 2025

Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.

The quest for sustainable solutions to plastic pollution has driven research into plastic-degrading enzymes, offering promising avenues for polymer recycling applications. However, enzymes derived from natural sources often exhibit suboptimal thermostability, hindering their industrial viability. Protein engineering techniques have emerged as a powerful approach to enhance the desired properties of these biocatalysts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!