Alkaline water electrolysis represents a pivotal technology for green hydrogen production yet faces critical challenges including limited current density and high energy input. Herein, a heterostructured bimetallic nitrides supported RuNi alloy (RuNi/ZrNiN) is developed through in situ epitaxial growth under ammonolysis, achieving exceptional bifunctional activity and durability for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in 1 m KOH electrolyte. The RuNi/ZrNiN exhibits a HER current density of -2 A cm at an overpotential of 392.8 mV, maintaining initial overpotential after 1000 h continuous electrolysis at -500 mA cm. For OER, it delivers a current density of 2 A cm at 1.822 V versus RHE, and sustains stable operation for 705 h at 500 mA cm. Experimental and theoretical studies unveil that the charge redistribution-induced high-valence Zr centers effectively polarize H─O bonds and promote water dissociation, and the electron-deficient interface Ru sites optimize hydrogen desorption kinetics. Dynamic OH spillovers from Zr sites to the adjacent tri-coordinated Ni hollow sites in NiN promote rapid *OH intermediate desorption and active site regeneration. Notably, the tri-coordinated Ni hollow sites in NiN proximal to Zr atoms exhibit tailored adsorption strength for oxo-intermediates, enabling a more energetically favorable pathway for O production.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202501586DOI Listing

Publication Analysis

Top Keywords

current density
12
runi alloy
8
evolution reaction
8
tri-coordinated hollow
8
hollow sites
8
sites nin
8
situ grown
4
grown runi
4
alloy zrnin
4
zrnin bifunctional
4

Similar Publications

Quantum Well Superlattice Heteronanostructures for Efficient Photocatalytic Hydrogen Evolution.

ACS Nano

March 2025

State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.

In this study, we construct a quantum well effect-based two-dimensional Z-scheme superlattice heteronanostructure photocatalyst constructed from hydrogen-bonded porphyrin organic frameworks (HOFs) and carbon nitride. Porphyrin HOFs extend spectral absorption, while their π-conjugation and electron density variations significantly enhance charge separation and exhibit favorable alignment with the energy levels of carbon nitride, thereby enabling efficient charge transfer. Carboxylic acid channels in the HOFs further promote the decomposition of water molecules, thereby boosting hydrogen production.

View Article and Find Full Text PDF

To surmount the shortcomings of powder-based catalysts and small electrode sizes, the development of meter-scale integrated electrode materials is essential for practical electrocatalytic applications, which requires fine control over the effective surface grafting of catalytic active sites on large-size electrodes as well as addressing the challenge of balancing cost-effective and large-scale manufacturing with highly active and stable operation. Herein, we report a low-cost, facile, and scalable method for directly constructing meter-scale single-molecule-integrated catalytic electrodes using commercially available, flexible, and size-tailored conductive carbon textiles (e.g.

View Article and Find Full Text PDF

MoSe/BiSe Heterostructure Immobilized in N-Doped Carbon Nanosheets Assembled Flower-Like Microspheres for High-Rate Sodium Storage.

Small

March 2025

Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China.

A key challenge for sodium-ion batteries (SIBs) lies in identifying suitable host materials capable of accommodating large Na ions while addressing sluggish chemical kinetics. The unique interfacial effects of heterogeneous structures have emerged as a critical factor in accelerating charge transfer and enhancing reaction kinetics. Herein, MoSe/BiSe composites integrated with N-doped carbon nanosheets are synthesized, which spontaneously self-assemble into flower-like microspheres (MoSe/BiSe@N-C).

View Article and Find Full Text PDF

Effect of Various Nanofillers on Piezoelectric Nanogenerator Performance of P(VDF-TrFE) Nanocomposite Thin Film.

Nanomaterials (Basel)

March 2025

Department of Chemical and Biochemical Engineering, Dongguk University, 30 Pildong-ro 1-gil, Jung-gu, Seoul 04620, Republic of Korea.

Flexible polymer-based piezoelectric nanogenerators (PENGs) have gained significant interest due to their ability to deliver clean and sustainable energy for self-powered electronics and wearable devices. Recently, the incorporation of fillers into the ferroelectric polymer matrix has been used to improve the relatively low piezoelectric properties of polymer-based PENGs. In this study, we investigated the effect of various nanofillers such as titania (TiO), zinc oxide (ZnO), reduced graphene oxide (rGO), and lead zirconate titanate (PZT) on the PENG performance of the nanocomposite thin films containing the nanofillers in poly(vinylidene fluoride-co-trifluoro ethylene) (P(VDF-TrFE)) matrix.

View Article and Find Full Text PDF

Progress in the Development of Flexible Devices Utilizing Protein Nanomaterials.

Nanomaterials (Basel)

February 2025

Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.

Flexible devices are soft, lightweight, and portable, making them suitable for large-area applications. These features significantly expand the scope of electronic devices and demonstrate their unique value in various fields, including smart wearable devices, medical and health monitoring, human-computer interaction, and brain-computer interfaces. Protein materials, due to their unique molecular structure, biological properties, sustainability, self-assembly ability, and good biocompatibility, can be applied in electronic devices to significantly enhance the sensitivity, stability, mechanical strength, energy density, and conductivity of the devices.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!