One‑carbon metabolism plays an important role in cancer progression. Methylenetetrahydrofolate dehydrogenase 2 (MTHFD2), a mitochondrial enzyme in one‑carbon metabolism, is dysregulated in several cancer types. However, the precise role and mechanisms of MTHFD2 in esophageal squamous cell carcinoma (ESCC) remain unclear. The present study unravels the multifaceted mechanisms by which MTHFD2 contributes to ESCC pathogenesis. Bioinformatics analyses revealed significant upregulation of MTHFD2 in ESCC tumor tissues, which was associated with advanced disease stage and poor patient prognosis. Validating these findings in clinical samples, MTHFD2 overexpression was confirmed through immunohistochemistry, Reverse transcription‑quantitative PCR and western blotting. Knockdown of MTHFD2 inhibited ESCC cell viability, colony formation, invasion, and tumor growth in vivo, indicating its oncogenic potential. Mechanistically, the present study elucidated a novel regulatory axis involving N6‑methyladenosine modification and MTHFD2 mRNA stability. Specifically, methyltransferase‑like 3 (METTL3) and insulin‑like growth factor 2 mRNA binding protein 2 (IGF2BP2) were identified as key mediators of m6A‑dependent stabilization of MTHFD2 mRNA, contributing to its elevated expression in ESCC. Furthermore, MTHFD2 was found to activate PI3K/AKT and ERK signaling pathways by modulating interaction between phosphatidylethanolamine‑binding protein 1 (PEBP1) and raf‑1 proto‑oncogene (RAF1). This modulation was achieved through direct binding of MTHFD2 to PEBP1, disrupting the inhibitory effect of PEBP1 on RAF1 and promoting downstream pathway activation. The oncogenic functions of MTHFD2 were attenuated upon PEBP1 knockdown, underscoring the role of the MTHFD2‑PEBP1 axis in ESCC progression. In summary, the present study uncovers a novel regulatory mechanism involving m6A modification and the MTHFD2‑PEBP1 axis, unveiling potential therapeutic avenues for targeting MTHFD2 in ESCC.

Download full-text PDF

Source
http://dx.doi.org/10.3892/ijmm.2025.5509DOI Listing

Publication Analysis

Top Keywords

mthfd2
13
esophageal squamous
8
squamous cell
8
cell carcinoma
8
one‑carbon metabolism
8
mechanisms mthfd2
8
mthfd2 escc
8
novel regulatory
8
mthfd2 mrna
8
mthfd2‑pebp1 axis
8

Similar Publications

One‑carbon metabolism plays an important role in cancer progression. Methylenetetrahydrofolate dehydrogenase 2 (MTHFD2), a mitochondrial enzyme in one‑carbon metabolism, is dysregulated in several cancer types. However, the precise role and mechanisms of MTHFD2 in esophageal squamous cell carcinoma (ESCC) remain unclear.

View Article and Find Full Text PDF

MTHFD2 promotes osteoclastogenesis and bone loss in rheumatoid arthritis by enhancing CKMT1-mediated oxidative phosphorylation.

BMC Med

February 2025

Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.

Background: Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by disrupted bone homeostasis. This study investigated the effect and underlying mechanisms of one-carbon metabolism enzyme methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) on osteoclast differentiation and bone loss in RA.

Methods: The expression of MTHFD2 was examined in CD14 + monocytes and murine bone marrow-derived macrophages (BMMs).

View Article and Find Full Text PDF

MTHFD2 stabilizes LOX expression through RNA methylation modification to promote sepsis-induced acute kidney injury progression.

Hum Cell

February 2025

The School of Clinical Medicine, Fujian Medical University, No.1 Xuefu North Road, Fuzhou, 350122, Fujian, People's Republic of China.

Myofibroblasts combine features of fibroblasts and smooth muscle cells, and they are reactive cells present under injury conditions. This study was performed to explore the mechanism that methylenetetrahydrofolate dehydrogenase/cyclohydrolase 2 (MTHFD2) mediated m6A modification in sepsis-induced AKI (SAKI) through regulating the collagen accumulation in myofibroblasts. Gene expression microarrays related to SAKI were obtained from the GEO database, and the hub protein involved was screened using PPI.

View Article and Find Full Text PDF

Background: Recent studies have shown that folate metabolism might influence cancer progression by regulating mitochondrial metabolism and glutamine is involved in the development and progression of several malignancies. This study aimed to explore the association between folate and glutamine metabolism and prognosis of kidney cancer.

Methods: We performed expression analysis, survival analysis, genetic alteration analysis, and tumor immune infiltrate analysis of related genes using platforms such as UALCAN, GEPIA, GEPIA2, cBioPortal, and TIMER.

View Article and Find Full Text PDF

MTHFD2 promotes breast cancer cell proliferation through IFRD1 RNA m6A methylation-mediated HDAC3/p53/mTOR pathway.

Neoplasma

December 2024

Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian, China.

MTHFD2 is highly overexpressed in breast cancer tissues, indicating that it might be used as a target in breast cancer treatment. This study aims to determine the role of MTHFD2 in breast cancer cell proliferation and the molecular pathways involved. In order to investigate MTHFD2 gene expression and its downstream pathways in breast cancer, we started our inquiry with a bioinformatics analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!