Role of GLP‑1 receptor agonists in sepsis and their therapeutic potential in sepsis‑induced muscle atrophy (Review).

Int J Mol Med

Trauma Center, Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China.

Published: May 2025

Sepsis‑induced myopathy (SIM) is a common complication in intensive care units, which is often associated with adverse outcomes, primarily manifested as skeletal muscle weakness and atrophy. Currently, the management of SIM focuses on prevention strategies, as effective therapeutic options remain elusive. Glucagon‑like peptide‑1 (GLP‑1) receptor agonists (GLP‑1RAs) have garnered attention as hypoglycemic and weight‑loss agents, with an increasing body of research focusing on the extrapancreatic effects of GLP‑1. In preclinical settings, GLP‑1RAs exert protective effects against sepsis‑related multiple organ dysfunction through anti‑inflammatory and antioxidant mechanisms. Based on the existing research, we hypothesized that GLP‑1RAs may serve potential protective roles in the repair and regeneration of skeletal muscle affected by sepsis. The present review aimed to explore the relationship between GLP‑1RAs and sepsis, as well as their impact on muscle atrophy‑related myopathy. Furthermore, the potential mechanisms and therapeutic benefits of GLP‑1RAs are discussed in the context of muscle atrophy induced by sepsis.

Download full-text PDF

Source
http://dx.doi.org/10.3892/ijmm.2025.5515DOI Listing

Publication Analysis

Top Keywords

glp‑1 receptor
8
receptor agonists
8
muscle atrophy
8
skeletal muscle
8
muscle
5
glp‑1ras
5
role glp‑1
4
sepsis
4
agonists sepsis
4
sepsis therapeutic
4

Similar Publications

Neuron-derived clone 77 (Nur77), a member of the orphan nuclear receptor family, is expressed and activated rapidly in response to diverse physiological and pathological stimuli. It exerts complex biological functions, including roles in the nervous system, genome integrity, cell differentiation, homeostasis, oxidative stress, autophagy, aging, and infection. Recent studies suggest that Nur77 agonists alleviate symptoms of neurodegenerative diseases, highlighting its potential as a therapeutic target in such conditions.

View Article and Find Full Text PDF

Glaucoma, a leading cause of irreversible blindness, is characterized by the progressive loss of retinal ganglion cells (RGCs) and optic nerve damage, often associated with elevated intraocular pressure (IOP). Retinoid X receptors (RXRs) are ligand-activated transcription factors crucial for neuroprotection, as they regulate gene expression to promote neuronal survival via several biochemical networks and reduce neuroinflammation. This study investigated the therapeutic potential of 9-cis-13,14-dihydroretinoic acid (9CDHRA), an endogenous retinoid RXR agonist, in mitigating RGC degeneration in a high-IOP-induced experimental model of glaucoma.

View Article and Find Full Text PDF

Zinc Ion Dyshomeostasis in Autism Spectrum Disorder.

Nutr Res Rev

March 2025

Department of Physiology, College of Medicine & Health Sciences, United Arab Emirates University, P.O. Box No. 15551, Al Ain, United Arab Emirates.

Autism spectrum disorder (ASD) is a neurodevelopmental disorder with significant social, communicative, and behavioral challenges, and its prevalence is increasing globally at an alarming rate. Children with ASD often have nutritional imbalances, and multiple micronutrient deficiencies. Among these, zinc (Zn) deficiency is prominent and has gained extensive scientific interest over the past few years.

View Article and Find Full Text PDF

Butyrophilin 3A1 (BTN3A1) is an integral membrane protein capable of detecting phosphoantigens, like (E)-4-hydroxy-3-methyl-but-2-enyl diphosphate (HMBPP), through its internal B30.2 domain. Detection of phosphoantigens leads to interactions with butyrophilin 2A1 and the subsequent activation of γδ-T cells.

View Article and Find Full Text PDF

Objective: The study investigated effects of peony callus extracts (PCE) on the protective efficacy against Ultraviolet B (UVB)-induced photoageing, using in vitro and in vivo studies. The research focused on PCE's ability to protect against inflammatory factors, DNA damage and accumulation of senescent cells, along with the evaluation of the extract's potential anti-photoageing benefits to skin.

Methods: Human keratinocyte cell line (HaCaT cells), mast cells and fibroblasts were used to evaluate the role of PCE in anti-photoageing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!