The switch-liker's guide to plant synthetic gene circuits.

Plant J

ARC Centre of Excellence in Plants for Space, School of Molecular Sciences, The University of Western Australia, Perth, Australia.

Published: March 2025

Synthetic gene circuits offer powerful new approaches for engineering plant traits by enabling precise control over gene expression through programmable logical operations. Unlike simple 'always-on' transgenes, circuits can integrate multiple input signals to achieve sophisticated spatiotemporal regulation of target genes while minimising interference with host cellular processes. Recent advances have demonstrated several platforms for building plant gene circuits, including systems based on bacterial transcription factors, site-specific recombinases and CRISPR/Cas components. These diverse molecular tools allow the construction of circuits that perform Boolean logic operations to control transgene expression or modulate endogenous pathways. However, implementing synthetic gene circuits in plants faces unique challenges, including long generation times that slow design-build-test cycles, limited availability of characterised genetic parts across species and technical hurdles in stable transformation. This review examines the core principles and components of plant synthetic gene circuits, including sensors, integrators, and actuators. We discuss recent technological developments, key challenges in circuit design and implementation, and strategies to overcome them. Finally, we explore the future applications of synthetic gene circuits in agriculture and basic research, from engineering stress resistance to enabling controlled bioproduction of valuable compounds. As this technology matures, synthetic gene circuits have the potential to enable sophisticated new plant traits that respond dynamically to environmental and developmental cues.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11887007PMC
http://dx.doi.org/10.1111/tpj.70090DOI Listing

Publication Analysis

Top Keywords

gene circuits
28
synthetic gene
24
circuits
9
plant synthetic
8
gene
8
plant traits
8
circuits including
8
synthetic
6
plant
5
switch-liker's guide
4

Similar Publications

Impacts of Naphthenic Acids (NAs) Exposure on Soil Bacterial Community and Antibiotic Resistance Genes (ARGs) Dissemination.

Curr Microbiol

March 2025

Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian, 116081, China.

Naphthenic acids (NAs) are indigenous and complex components in petroleum. In the context of increasing global energy demand, the increasing extraction of fossil resources leads to increased environmental release of NAs, resulting in various environmental risks. However, the impact of NAs exposure on soil microorganisms remains still unclear.

View Article and Find Full Text PDF

Regulates Muscle Growth and Development by Targeting .

Cells

March 2025

Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Afairs, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.

Non-coding genes, such as microRNA and lncRNA, which have been widely studied, play an important role in the regulatory network of skeletal muscle development. However, the functions and mechanisms of most non-coding RNAs in skeletal muscle regulatory networks are unclear. This study investigated the function and mechanism of in muscle growth and development.

View Article and Find Full Text PDF

The Chinese white pear (Pyrus bretschneideri) is an economically significant fruit crop worldwide. Previous versions of the P. bretschneideri genome assembly contain numerous gaps and unanchored genetic regions.

View Article and Find Full Text PDF

Cancer remains a major global health challenge, with prostate cancer, lung cancer, colorectal cancer, and breast cancer accounting for nearly half of all diagnoses. Despite advancements in cancer treatment, metastasis to distant organs continues to be the leading cause of cancer-related mortality. The progression of cancer involves the alteration of numerous genes, with dynamic changes in chromatin organization and histone modifications playing a critical role in regulating cancer-associated genes.

View Article and Find Full Text PDF

Background: Atherosclerosis is a significant contributor to cardiovascular disease, and conventional diagnostic methods frequently fall short in the timely and accurate detection of early-stage atherosclerosis. Abnormal lipid metabolism plays a critical role in the development of atherosclerosis. Consequently, the identification of new diagnostic markers is essential for the precise diagnosis of this condition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!