Current European/US guidelines recommend that molecular testing in advanced non-small cell lung cancer (aNSCLC) be performed using next-generation sequencing (NGS). However, the global uptake of NGS is limited, largely owing to reimbursement constraints. We compared real-world costs of NGS and single-gene testing (SGT) in nonsquamous aNSCLC. This observational study was conducted across 10 pathology centers in 10 different countries worldwide. Biomarker data collected via structured questionnaires (1 January-31 December 2021) were used to feed micro-costing analyses for three scenarios ['Starting Point' (SP; 2021-2022), 'Current Practice' (CP; 2023-2024), and 'Future Horizons' (FH; 2025-2028)] in both a real-world model, comprising all biomarkers tested by each center, and a standardized model, comprising the same sets of biomarkers across centers. Testing costs (including retesting) encompassed personnel costs, consumables, equipment, and overheads. Overall, 4,491 patients with aNSCLC were evaluated. Mean per-patient costs decreased for NGS relative to SGT over time, with real-world model costs 18% lower for NGS than for SGT in the SP scenario, and 26% lower for NGS than for SGT in the CP scenario. Mean per-biomarker costs also decreased over time for NGS relative to SGT. In the standardized model, the tipping point for the minimum number of biomarkers required for NGS to result in cost savings (per patient) was 10 and 12 in the SP and CP scenarios, respectively. Retesting had a negligible impact on cost analyses, and results were robust to variation in cost parameters. This study provides robust real-world global evidence for cost savings with NGS-based panels over SGT to evaluate predictive biomarkers in nonsquamous aNSCLC when the number of biomarkers to be tested exceeds 10. Widespread adoption of NGS may enable more efficient use of limited healthcare resources.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11886603 | PMC |
http://dx.doi.org/10.1002/2056-4538.70018 | DOI Listing |
Epileptic Disord
March 2025
Division of Child Neurology, Department of Pediatrics, Ege University Medical Faculty, Izmir, Turkey.
Objective: To evaluate the significance of genetic testing in neonatal- and infantile-onset genetic epilepsies (NIGEP) for enhanced molecular diagnosis with management implications.
Methods: A single-center cohort of 128 patients with NIGEP (aged 0-36 months) from 2010 to 2022 was retrospectively assessed. The diagnostic utility of genetic testing, including next-generation sequencing (NGS) and chromosome-based approaches, was surveyed to determine their impact on antiseizure medication adjustments and precision medicine.
HLA
March 2025
Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Cell and Gene Therapy for Hematologic Malignancies, Peking University, Beijing, China.
The HLA-A*02:1178 allele differs from HLA-A*02:07:01:01 by one nucleotide substitution in codon 326 in exon 7.
View Article and Find Full Text PDFHLA
March 2025
Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, Medical Faculty - University of Freiburg, University of Freiburg, Freiburg, Germany.
HLA-C*15:02:01:69Q differs from HLA-C*15:02:01:01 by a single substitution at the genomic nucleotide position 2727 in intron 7.
View Article and Find Full Text PDFHLA
March 2025
Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Cell and Gene Therapy for Hematologic Malignancies, Peking University, Beijing, China.
The HLA-A*11:481 allele differs from HLA-A*11:01:01:01 by one nucleotide substitution in codon -8 in exon 1.
View Article and Find Full Text PDFHLA
March 2025
Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, Medical Faculty - Universityof Freiburg, University of Freiburg, Freiburg, Germany.
HLA-B*51:01:01:125 differs from HLA-B*51:01:01:61 by a single substitution at the genomic nucleotide position 199 in intron 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!