Bacterial infections are one of the primary triggers of global disease outbreaks. Traditional detection methods, such as bacterial culture and PCR, while reliable, are limited by their time-consuming procedures and operational complexity. In recent years, the CRISPR-Cas system has demonstrated significant potential in gene editing and diagnostics due to its high specificity and precision, offering innovative solutions for bacterial detection. By integrating pre-amplification techniques, the CRISPR-Cas system has substantially enhanced detection sensitivity, particularly excelling in detecting low-concentration target bacteria. This review summarizes the principles and application examples of CRISPR-Cas-based fluorescence, electrochemical, lateral flow, and colorimetric nanostructured biosensors developed over the past three years, categorizing them according to their recognition methods (e.g. bacterial genomes, aptamers, antibodies). It systematically explores the broad application prospects of these sensors in medical diagnostics, environmental monitoring, and food safety assessment. Additionally, this review discusses future research directions and potential development prospects, providing new insights and technical support for the rapid diagnosis and treatment of bacterial infections.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/17435889.2025.2476384 | DOI Listing |
Sovrem Tekhnologii Med
March 2025
PhD, Leading Researcher; Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, 3 Institutskaya St., Pushchino, 142290, Russia; Senior Researcher; Institute for Biological Instrumentation of the Russian Academy of Sciences, 7 Institutskaya St., Pushchino, 142290, Russia.
This study investigates the role of porosity in silicon nanoparticles' ability to act as sonosensitizers for sonodynamic therapy of malignant tumors. Structural analysis showed that porous nanoparticles are composed of nanocrystals approximately 4 nm in size and contain 15 nm pores, whereas non-porous nanoparticles have a dense structure with nanocrystals ranging from 10 to 50 nm. Porous nanoparticles exhibit pronounced photoluminescent properties, associated with quantum confinement effects in their small nanocrystals.
View Article and Find Full Text PDFMikrochim Acta
March 2025
Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
An electrochemical DNA biosensor is presented for early viral infection detection, integrating molybdenum disulphide (MoS₂), tetrahedral DNA nanostructures (TDNs), and thionine-modified carbon nanodots (CNDsTy). The innovation of this work lies in the first-time integration of these nanomaterials for the preparation of a bioconjugate, whose synergy enables the biosensor's functionality. MoS₂ anchors the TDNs, which carry the capture probe for virus identification via genetic code recognition.
View Article and Find Full Text PDFSci Rep
March 2025
Department of Chemistry and Biology, Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyo, Matsuyama, Ehime, 790-8577, Japan.
Gold nanoparticles (AuNPs) are used as colorimetric biosensors that, combined with immobilised single-stranded DNA (ssDNA-AuNPs), can be used in genetic diagnosis because of their rapid and sequence-specific aggregation properties. Herein, we investigated the effect of the steric structure and density of immobilised DNA on AuNPs in non-crosslinking aggregation-based nucleic acid detection. Detection sensitivity improved with decreasing DNA density for linear conformations, but worsened for those with more rigid stem structures.
View Article and Find Full Text PDFACS Nano
March 2025
Fachbereich Physik, Universität Hamburg, 22761 Hamburg, Germany.
Interfacing artificial devices with the human brain is the central goal of neurotechnology. Yet, our imaginations are often limited by currently available paradigms and technologies. Suggestions for brain-machine interfaces have changed over time, along with the available technology.
View Article and Find Full Text PDFACS Omega
March 2025
Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, Oeiras 2780-157, Portugal.
A dye-decolorizing peroxidase (DyP)-based electrochemical biosensor for hydrogen peroxide (HO) is developed in miniaturized, disposable, and user-friendly configuration. Wild type and variant DyPs are immobilized on self-assembled monolayer (SAM)-coated and nanostructure-modified screen-printed electrodes (SPEs) to ensure biocompatibility and increase the enzyme loading and hence the biosensor sensitivity. The structure of the enzymes attached to gold and silver nanoparticle (AuNP and AgNP)-modified carbon- and gold-based SPEs (C-SPE and Au-SPE) is monitored by resonance Raman spectroscopy and their electrocatalytic performance toward HO by electrochemistry.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!