Pulling back the mitochondria's iron curtain.

NPJ Metab Health Dis

Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001 Israel.

Published: March 2025

Mitochondrial functionality and cellular iron homeostasis are closely intertwined. Mitochondria are biosynthetic hubs for essential iron cofactors such as iron-sulfur (Fe-S) clusters and heme. These cofactors, in turn, enable key mitochondrial pathways, such as energy and metabolite production. Mishandling of mitochondrial iron is associated with a spectrum of human pathologies ranging from rare genetic disorders to common conditions. Here, we review mitochondrial iron utilization and its intersection with disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11879881PMC
http://dx.doi.org/10.1038/s44324-024-00045-yDOI Listing

Publication Analysis

Top Keywords

mitochondrial iron
8
iron
5
pulling mitochondria's
4
mitochondria's iron
4
iron curtain
4
mitochondrial
4
curtain mitochondrial
4
mitochondrial functionality
4
functionality cellular
4
cellular iron
4

Similar Publications

Injectable Nanocomposite Hydrogels for Intervertebral Disc Degeneration: Combating Oxidative Stress, Mitochondrial Dysfunction, and Ferroptosis.

Adv Healthc Mater

March 2025

Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.

Intervertebral disc degeneration (IVDD) is a major cause of low back pain, where oxidative stress and mitochondrial dysfunction are key contributors. Additionally, ferroptosis, an iron-dependent form of cell death, is identified as a critical mechanism in IVDD pathogenesis. Herein, the therapeutic potential of gallic acid (GA)-derived PGA-Cu nanoparticles, enhanced with functional octapeptide (Cys-Lys-His-Gly-d-Arg-d-Tyr-Lys-Phe, SS08) to build the mitochondria-targeted nanoparticles (PGA-Cu@SS08), and embedded within a hydrogel matrix to form a nanocomposite hydrogel, is explored.

View Article and Find Full Text PDF

The GPR30-Mediated BMP-6/HEP/FPN Signaling Pathway Inhibits Ferroptosis in Bone Marrow Mesenchymal Stem Cells to Alleviate Osteoporosis.

Int J Mol Sci

February 2025

Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing 210023, China.

Dysregulated iron metabolism-induced ferroptosis is considered a key pathological mechanism in the development of osteoporosis (OP). G protein-coupled receptor 30 (GPR30, also known as Gper1) is an estrogen-binding receptor that has shown therapeutic benefits in patients with certain degenerative diseases. Moreover, several studies have demonstrated the anti-ferroptotic effects of estrogen receptor activation.

View Article and Find Full Text PDF

Background: Vagus nerve stimulation (VNS) exhibits protective effects against remote organ injury following ischemia-reperfusion (I/R). However, its effects on acute myocardial injury induced by hepatic I/R in rats, and the underlying mechanisms, remain unclear.

Methods: Thirty male rats were randomly assigned to five groups: Sham, I/R, VNS, VNS + Erastin, and VNS + DMSO.

View Article and Find Full Text PDF

Melanocyte (MC) death represents the basic pathological change of vitiligo. Kaempferol (Kae) is one of the main active ingredients of Tribulus terrestris, which is a commonly used Chinese medicine in the treatment of vitiligo. However, it remains unclear whether Kae can improve MC death, and hence relevant mechanisms need to be further explored.

View Article and Find Full Text PDF

Mitochondrial glutaredoxin Grx5 functions as a central hub for cellular iron-sulfur cluster assembly.

J Biol Chem

March 2025

Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA. Electronic address:

Iron-sulfur (FeS) protein biogenesis in eukaryotes is mediated by two different machineries - one in the mitochondria and another in the cytoplasm. Glutaredoxin 5 (Grx5) is a component of the mitochondrial iron-sulfur cluster (ISC) machinery. Here we define the roles of Grx5 in maintaining overall mitochondrial/cellular FeS protein biogenesis, utilizing mitochondria and cytoplasm isolated from Saccharomyces cerevisiae cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!