Mitochondrial integrity is fundamental to cellular function, upheld by a network of proteases that regulate proteostasis and mitochondrial dynamics. Among these proteases, AFG3L2 is critical due to its roles in maintaining mitochondrial homeostasis, regulating mitochondrial protein quality, and facilitating mitochondrial biogenesis. Mutations in AFG3L2 are implicated in a spectrum of diseases, including spinocerebellar ataxia type 28 (SCA28) and spastic ataxia 5 (SPAX5), as well as other systemic conditions. This study employs a multi-omics approach to investigate the biochemical impact of AFG3L2 mutations in immortalized lymphoblastoid cell lines derived from a patient with biallelic variants leading to spastic ataxia (SPAX5). Our proteomic analysis revealed AFG3L2 impairment, with significant dysregulation of proteins critical for mitochondrial function, cytoskeletal integrity, and cellular metabolism. Specifically, disruptions were observed in mitochondrial dynamics and calcium homeostasis, alongside downregulation of key proteins like COX11, a copper chaperone for complex IV assembly, and NFU1, an iron-sulfur cluster protein linked to spastic paraparesis and infection-related worsening. Lipidomic analysis highlighted substantial alterations in lipid composition, with significant decreases in sphingomyelins, phosphatidylethanolamine, and phosphatidylcholine, reflecting disruptions in lipid metabolism and membrane integrity. Metabolomic profiling did not reveal any significant findings. Our comprehensive investigation into loss of functional AFG3L2 elucidates a pathophysiology extending beyond mitochondrial proteostasis, implicating a wide array of cellular processes. The findings reveal substantial cellular disturbances at multiple levels, contributing to neurodegeneration through disrupted mitochondrial respiratory chain, calcium homeostasis, cytoskeletal integrity, and altered lipid homeostasis. This study underscores the complexity of SPAX5 pathophysiology and the importance of multi-omics approaches in developing effective strategies to address the impact of loss of functional AFG3L2. Our data also highlight the value of immortalized lymphoblastoid cells as a tool for pre-clinical testing and research, offering a detailed biochemical fingerprint that enhances our understanding of SPAX5 and identifies potential areas for further investigation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11882581PMC
http://dx.doi.org/10.3389/fnmol.2025.1548255DOI Listing

Publication Analysis

Top Keywords

spastic ataxia
12
mitochondrial
10
ataxia type
8
mitochondrial dynamics
8
ataxia spax5
8
immortalized lymphoblastoid
8
cytoskeletal integrity
8
calcium homeostasis
8
loss functional
8
functional afg3l2
8

Similar Publications

Mitochondrial integrity is fundamental to cellular function, upheld by a network of proteases that regulate proteostasis and mitochondrial dynamics. Among these proteases, AFG3L2 is critical due to its roles in maintaining mitochondrial homeostasis, regulating mitochondrial protein quality, and facilitating mitochondrial biogenesis. Mutations in AFG3L2 are implicated in a spectrum of diseases, including spinocerebellar ataxia type 28 (SCA28) and spastic ataxia 5 (SPAX5), as well as other systemic conditions.

View Article and Find Full Text PDF

Objective: The hereditary spastic-ataxia spectrum disorders are a group of disabling neurological diseases. The traditional genetic testing pathway is complex, multistep and leaves many cases unsolved. We aim to streamline and improve this process using long-read sequencing.

View Article and Find Full Text PDF

Introduction: Cerebrotendinous xanthomatosis (CTX) is a rare autosomal recessive congenital disorder of bile acid metabolism resulting from variants in the CYP27A1 gene. CTX presents with heterogenous clinical features. Descriptions from diverse populations remain sparse, particularly from the Indian subcontinent.

View Article and Find Full Text PDF

Mitochondria-associated paraplegin dysfunction is primarily linked to spastic paraplegia; however, genetic alterations in SPG7 have been associated with a broader spectrum of clinical symptoms. To identify disease-causing variants in the SPG7 gene, 437 patients with spastic ataxia, mitochondrial dysfunction-associated symptoms, or motoneuron lesions detected by EMG have been tested. We aimed to assess the clinical spectrum and determine the frequency of damaging variants within patient groups, particularly those less studied.

View Article and Find Full Text PDF

Whole Blood DNA Methylation Analysis Reveals Epigenetic Changes Associated with ARSACS.

Cerebellum

January 2025

Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, Pisa, Italy.

Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is a rare inherited condition described worldwide and characterized by a wide spectrum of heterogeneity in terms of genotype and phenotype. How sacsin loss leads to neurodegeneration is still unclear, and current knowledge indicates that sacsin is involved in multiple functional mechanisms. We hence hypothesized the existence of epigenetic factors, in particular alterations in methylation patterns, that could contribute to ARSACS pathogenesis and explain the pleiotropic effects of SACS further than pathogenic mutations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!