The family of glutathione peroxidase proteins and their role against biotic stress in plants: a systematic review.

Front Plant Sci

Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Ilhéus, Brazil.

Published: February 2025

Introduction: Glutathione peroxidases (GPXs) are extensively studied for their indispensable roles in eliminating reactive oxygen species by catalyzing the reduction of hydrogen peroxide or lipid peroxides to prevent cell damage. However, knowledge of GPXs in plants still has many gaps to be filled. Thus, we present the first systematic review (SR) aimed at examining the function of GPXs and their protective role against cell death in plants subjected to biotic stress.

Methods: To guide the SR and avoid bias, a protocol was developed that contained inclusion and exclusion criteria based on PRISMA guidelines. Three databases (PubMed, Science Direct, and Springer) were used to identify relevant studies for this research were selected.

Results: A total of 28 articles related to the proposed objective. The results highlight the importance of GPXs in plant defense against biotic stress, including their role in protecting against cell death, similar to the anti-apoptotic GPXs in animals. Data from gene expression and protein accumulation studies in plants under various biotic stresses reveal that GPXs can both increase resistance and susceptibility to pathogens. In addition to their antioxidant functions, GPXs act as sensors and transmitters of HO signals, integrating with the ABA signaling pathway during stress.

Discussion: These findings show that GPXs delay senescence or reinforce physical barriers, thereby modulating resistance or susceptibility to pathogens. Additionally, their functions are linked to their cellular localization, which demonstrates an evolutionary relationship between the studied isoforms and their role in plant defense. This information broadens the understanding of molecular strategies involving GPX isoforms and provides a foundation for discussions and actions aimed at controlling necrotrophic and/or hemibiotrophic pathogens.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11882536PMC
http://dx.doi.org/10.3389/fpls.2025.1425880DOI Listing

Publication Analysis

Top Keywords

biotic stress
8
systematic review
8
gpxs
8
cell death
8
plant defense
8
resistance susceptibility
8
susceptibility pathogens
8
family glutathione
4
glutathione peroxidase
4
peroxidase proteins
4

Similar Publications

Macrophage mitochondrial dysfunction, caused by oxidative stress, has been proposed as an essential event in the progression of chronic inflammation diseases, such as atherosclerosis. The cluster of differentiation-36 (CD36) and lectin-like oxLDL receptor-1 (LOX-1) scavenger receptors mediate macrophage uptake of oxidized low-density lipoprotein (oxLDL), which contributes to mitochondrial dysfunction by sustained production of mitochondrial reactive oxygen species (mtROS), as well as membrane depolarization. In the present study, the antioxidant mechanisms of action of the selective synthetic azapeptide CD36 ligand MPE-298 have been revealed.

View Article and Find Full Text PDF

Diabetic Retinopathy (DR): Mechanisms, Current Therapies, and Emerging Strategies.

Cells

March 2025

New Drug Development Center, Daegu-Gyeongbukk Medical Innovation Foundation (K-MEDI hub), 80 Cheombok-ro, Dong-gu, Daegu 41061, Republic of Korea.

Diabetic retinopathy (DR) is one of the most prevalent complications of diabetes, affecting nearly one-third of patients with diabetes mellitus and remaining a leading cause of blindness worldwide. Among the various diabetes-induced complications, DR is of particular importance due to its direct impact on vision and the irreversible damage to the retina. DR is characterized by multiple pathological processes, primarily a hyperglycemia-induced inflammatory response and oxidative stress.

View Article and Find Full Text PDF

Muscadine grapes are renowned for their unique traits, natural disease resistance, and rich bioactive compounds. Despite extensive research on their phytochemical properties, microbial communities, particularly endophytic bacteria, remain largely unexplored. These bacteria play crucial roles in plant health, stress tolerance, and ecological interactions.

View Article and Find Full Text PDF

Defining the Protein Phosphatase 2A (PP2A) Subcomplexes That Regulate FoxO Transcription Factor Localization.

Cells

February 2025

Department of Microbiology, Immunology, and Molecular Genetics, UT Health Science Center, San Antonio, TX 78229, USA.

The family of forkhead box O (FoxO) transcription factors regulate cellular processes involved in glucose metabolism, stress resistance, DNA damage repair, and tumor suppression. FoxO transactivation activity is tightly regulated by a complex network of signaling pathways and post-translational modifications. While it has been well established that phosphorylation promotes FoxO cytoplasmic retention and inactivation, the mechanism underlying dephosphorylation and nuclear translocation is less clear.

View Article and Find Full Text PDF

Ageing is a major risk factor for cognitive and physical decline, but its mechanisms remain poorly understood. This study aimed to detect early cognitive and physical changes, and to analyze the pathway involved by monitoring two groups of mice: a young and an adult group. The study has identified the types of molecules involved in the hippocampus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!