Hydrodynamic efficient cell capture and pairing method on microfluidic cell electrofusion chip.

APL Bioeng

Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University, Chongqing 400044, China.

Published: March 2025

Cell fusion is a widely employed process in various biological procedures, demonstrating significant application value in biotechnology. Cell pairing is a crucial manipulation for cell fusion. Standard fusion techniques, however, often provide poor and random cell contact, leading to low yields. In this study, we present a novel microfluidic device that utilizes a three-path symmetrical channel hydrodynamic capture method to achieve high-efficiency cell capture and pairing. The device contains several symmetrical channels and capture units, enabling three-path capture of two kinds of cells. To better understand the conditions necessary for effective cell pairing, we established a theoretical model of the three-path trapping flow field and conducted a qualitative force analysis on cells. Using K562 cells to explore the effect of different volumetric flow ratios of symmetric channels on cell capture and pairing efficiency, we finally got the optimized structure and obtained a single-cell capture efficiency of approximately 95.6 ± 2.0% and a cell pairing efficiency of approximately 83.3 ± 8.8%. Subsequently, electrofusion experiments were carried out on the paired cells, resulting in a fusion efficiency of approximately 77.8 ± 9.6%.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11884867PMC
http://dx.doi.org/10.1063/5.0250472DOI Listing

Publication Analysis

Top Keywords

cell capture
12
capture pairing
12
cell pairing
12
cell
10
cell fusion
8
pairing efficiency
8
capture
7
pairing
6
hydrodynamic efficient
4
efficient cell
4

Similar Publications

Motivation: Computational models are crucial for addressing critical questions about systems evolution and deciphering system connections. The pivotal feature of making this concept recognisable from the biological and clinical community is the possibility of quickly inspecting the whole system, bearing in mind the different granularity levels of its components. This holistic view of system behaviour expands the evolution study by identifying the heterogeneous behaviours applicable, for example, to the cancer evolution study.

View Article and Find Full Text PDF

Motivation: Inferring gene networks provides insights into biological pathways and functional relationships among genes. When gene expression samples exhibit heterogeneity, they may originate from unknown subtypes, prompting the utilization of mixture Gaussian graphical model for simultaneous subclassification and gene network inference. However, this method overlooks the heterogeneity of network relationships across subtypes and does not sufficiently emphasize shared relationships.

View Article and Find Full Text PDF

Bacterial populations experience chemical gradients in nature. However, most experimental systems either ignore gradients or fail to capture gradients in mechanically relevant contexts. Here, we use microfluidic experiments and biophysical simulations to explore how host-relevant shear flow affects antimicrobial gradients across communities of the highly resistant pathogen .

View Article and Find Full Text PDF

Microfluidic isolation and release of live disseminated breast tumor cells in bone marrow.

PLoS One

March 2025

Department of Mechanical and Aerospace Engineering, Interdisciplinary Microsystems Group, Gainesville, Florida, United States of America.

Breast cancer represents a significant therapeutic challenge due to its aggressive nature and resistance to treatment. A major cause of treatment failure in breast cancer is the presence of rare, low-proliferative disseminated tumor cells (DTCs) in distant organs including the bone marrow. This study introduced a microfluidic-based approach to improve the immunodetection and isolation of these rare DTCs for downstream analysis, with an emphasis on optimizing immunocapture, release, and enrichment methods of live DTCs as compared to the standard approach for blood-borne circulating tumor cells (CTCs).

View Article and Find Full Text PDF

The ability of microbial active motion, morphology, and optical properties to serve as biosignatures was investigated by in situ video microscopy in a wide range of extreme field sites where such imaging had not been performed previously. These sites allowed for sampling seawater, sea ice brines, cryopeg brines, hypersaline pools and seeps, hyperalkaline springs, and glaciovolcanic cave ice. In all samples except the cryopeg brine, active motion was observed without any sample treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!