Introduction: Light exposure of embryos during assisted reproduction affects embryo quality and implantation capacity in a wavelength dependent manner. We investigated the molecular mechanism of these light-induced changes through the comparative analysis of gene expression and regulatory miRNA profile of murine embryos cultured in dark environment and those exposed to white- or red filtered light. miRNA sequencing was used to assess the role of embryo-derived extracellular vesicles in the endometrium-embryo dialogue.
Methods: cultured mouse embryos at 3.5 days post coitum (dpc) were exposed to white or red filtered light. After 24 hours mRNA and miRNA content of the embryos as well as the miRNA content of embryo-derived extracellular vesicles were isolated and RNA-sequencing was performed. Differential expression analysis and functional enrichment analysis were used for evaluating the transcriptome results.
Results: Light exposure caused transcriptomic changes in the embryos. White light upregulated apoptotic pathways, while red filtered light gave rise to the activation of regeneration pathways, including DNA repair mechanisms. Embryo-derived extracellular vesicles enclosed wavelength dependently unique miRNA cargos the target genes of which play a role in embryo implantation.
Discussion: White light upregulates apoptotic pathways, at both the transcriptome and regulatory miRNAs levels. Red filtration partially counterbalances these negative effects by shifting the cellular processes towards regeneration, including DNA repair mechanisms. Extracellular vesicles of light exposed embryos play a role in blastocyst-decidua communication through the horizontal transfer of regulatory miRNAs. Our data prove that light exposure during fertilization modifies cell function that might affect the outcome of implantation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11882875 | PMC |
http://dx.doi.org/10.3389/fimmu.2025.1429252 | DOI Listing |
Elife
March 2025
Department of Neuroscience, Georgetown University Medical Center, Washington DC, United States.
Research on brain plasticity, particularly in the context of deafness, consistently emphasizes the reorganization of the auditory cortex. But to what extent do all individuals with deafness show the same level of reorganization? To address this question, we examined the individual differences in functional connectivity (FC) from the deprived auditory cortex. Our findings demonstrate remarkable differentiation between individuals deriving from the absence of shared auditory experiences, resulting in heightened FC variability among deaf individuals, compared to more consistent FC in the hearing group.
View Article and Find Full Text PDFNanomaterials (Basel)
February 2025
Department of Biotechnology, Vaagdevi Degree and P.G. College, Warangal 506001, India.
This study explores the green synthesis of silver nanoparticles (AgNPs) using (lemongrass) extract as a reducing agent. Synthesis was confirmed by a color change (light yellow to dark brown) under optimal conditions: 1.50 mM silver nitrate, 3.
View Article and Find Full Text PDFJ Exp Bot
March 2025
Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-3, Kagamiyama, Higashi-Hiroshima 739-8526, Japan.
The leaves of the cycad Encephalartos horridus exhibit a conspicuous glaucous appearance, attributed to the presence of epicuticular wax. However, the molecular and optical bases of this coloration have not been scientifically explained. In this study, we conducted a detailed analysis of the epicuticular wax composition, combined with RNA-Seq and de novo transcriptome assembly, to uncover the molecular mechanisms underlying this phenomenon.
View Article and Find Full Text PDFMacromol Rapid Commun
March 2025
Institute of Fundamental Technological Research, Polish Academy of Sciences, ul. Pawińskiego 5B, Warsaw, 02-106, Poland.
This study explores the development of a photo-responsive bicomponent electrospun platform and its drug delivery capabilities. This platform is composed of two polymers of poly(lactide-co-glycolide) (PLGA) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). Then, the platform is decorated with plasmonic gold nanostars (Au NSs) that are capable of on-demand drug release.
View Article and Find Full Text PDFFront Plant Sci
February 2025
Department of Mechanical Engineering, Shibaura Institute of Technology, Tokyo, Japan.
With rapid climate change, it has been increasingly difficult to grow different crops, and as an alternative method, artificial cultivation in controlled environments has evolved into a new sustainable agriculture practice. However, the cost of having a controlled environment has become a major issue, and investigations have been conducted to develop cost-saving and efficient cultivation techniques. One research focus is on the utilization of stimulating appropriate photoreceptors for a certain time by far-red (FR) light to influence plant development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!