A combination of irradiation and oclacitinib, a Janus kinase (JAK) inhibitor used in dogs, could lead to synergistic anticancer effects in canine tumors. However, the anti-tumor effects of oclacitinib remain unclear. This study investigated the radio-sensitizing effect of oclacitinib in canine tumors and determined its underlying mechanisms using osteosarcoma (HMPOS), malignant melanoma (CMeC), and thyroid adenocarcinoma (CTAC) cell lines. A clonogenic assay and a tumor growth assessment in a xenograft mouse model (BALB/cAJcl-nu/nu) were performed to evaluate the radio-sensitizing effects of oclacitinib. Oclacitinib enhanced the radio-sensitivity of tumor cells both and . The signal transducer and activator of transcription (STAT)3 expression was activated and suppressed by oclacitinib in X-irradiation-exposed cells. Oclacitinib enhanced radiation-induced apoptosis only in HMPOS cells by inhibiting anti-apoptotic genes. In addition, oclacitinib inhibited the transcription of cell-cycle-regulating genes and arrested cell cycle progression from the G1 phase to subsequent phases. In conclusion, oclacitinib enhanced radio-sensitivity both and by triggering apoptosis and impeding cell cycle progression via STAT3 inhibition in canine tumor cell lines. This study suggested the clinical therapeutic potential of oclacitinib and radiation therapy in enhancing treatment efficacy and outcomes in canine tumors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11883359 | PMC |
http://dx.doi.org/10.1016/j.omton.2025.200946 | DOI Listing |
Int J Cancer
March 2025
Center for Epigenetics & Disease Prevention, Texas A&M HEALTH, and Department of Translational Medical Sciences, Texas A&M University Naresh K. Vashisht College of Medicine, Houston, Texas, USA.
A previously reported clinical trial in familial adenomatous polyposis (FAP) patients treated with erlotinib plus sulindac (ERL + SUL) highlighted immune response/interferon-γ signaling as a key pathway. In this study, we combine intermittent low-dose ERL ± SUL treatment in the polyposis in rat colon (Pirc) model with mechanistic studies on tumor-associated immune modulation. At clinically relevant doses, short-term (16 weeks) and long-term (46 weeks) ERL ± SUL administration results in near-complete tumor suppression in Pirc colon and duodenum (p < 0.
View Article and Find Full Text PDFCells
March 2025
Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico.
Metabolic reprogramming plays a crucial role in cancer biology and the mechanisms underlying its regulation represent a promising study area. In this regard, the discovery of non-coding RNAs opened a new regulatory landscape, which is in the early stages of investigation. Using a differential expression model of HOTAIR, we evaluated the expression level of metabolic enzymes, as well as the metabolites produced by glycolysis and glutaminolysis.
View Article and Find Full Text PDFCells
March 2025
Faculté de Pharmacie, Université de Montréal, Montréal, QC H3C 3J7, Canada.
Macrophage mitochondrial dysfunction, caused by oxidative stress, has been proposed as an essential event in the progression of chronic inflammation diseases, such as atherosclerosis. The cluster of differentiation-36 (CD36) and lectin-like oxLDL receptor-1 (LOX-1) scavenger receptors mediate macrophage uptake of oxidized low-density lipoprotein (oxLDL), which contributes to mitochondrial dysfunction by sustained production of mitochondrial reactive oxygen species (mtROS), as well as membrane depolarization. In the present study, the antioxidant mechanisms of action of the selective synthetic azapeptide CD36 ligand MPE-298 have been revealed.
View Article and Find Full Text PDFCells
March 2025
Renal Division, Department of Medicine IV, Ludwig-Maximilians-University (LMU) Hospital, Ludwig-Maximilians-University (LMU), 80336 Munich, Germany.
A20/Tnfaip3, an early NF-κB response gene and key negative regulator of NF-κB signaling, suppresses proinflammatory responses. Its ubiquitinase and deubiquitinase activities mediate proteasomal degradation within the NF-κB pathway. This study investigated the involvement of A20 signaling alterations in podocytes in the development of kidney injury.
View Article and Find Full Text PDFCells
March 2025
Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Afairs, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
Non-coding genes, such as microRNA and lncRNA, which have been widely studied, play an important role in the regulatory network of skeletal muscle development. However, the functions and mechanisms of most non-coding RNAs in skeletal muscle regulatory networks are unclear. This study investigated the function and mechanism of in muscle growth and development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!