Osteoporosis is characterized by excessive bone resorption and/or defects in bone formation. Identification of factors promoting osteoblast differentiation may provide potential targets for osteoporosis therapy. Through integral analyses of multiple datasets, NIBAN2 is found to be tightly associated with bone formation and osteoporosis. Indeed, NIBAN2 promotes osteoblast differentiation, and conditional Niban2 knockout in osteoblasts caused bone loss and insufficient mineralization. Mechanistically, NIBAN2 interacts with the HNRNPU-cored spliceosome complex and alters its components to regulate the alternative splicing of RUNX2, which ultimately cause an increase in functional RUNX2 (nuclear localization sequence complete) but a decrease in dysfunctional RUNX2 (exon 6 exclusive) to reinforce osteoblast differentiation. Most importantly, NIBAN2 expression level negatively correlates with RUNX2 spliced isoforms and bone loss in osteoporosis patients. NIBAN2 overexpression rescues bone loss in ovariectomized mice. Thus, this research identifies NIBAN2-regulated RUNX2 alternative splicing as a potential mechanism of osteoblast differentiation that may present strategies for antagonizing osteoporosis.

Download full-text PDF

Source
http://dx.doi.org/10.1002/advs.202416536DOI Listing

Publication Analysis

Top Keywords

osteoblast differentiation
16
alternative splicing
12
bone loss
12
niban2-regulated runx2
8
runx2 alternative
8
strategies antagonizing
8
antagonizing osteoporosis
8
bone formation
8
runx2
6
osteoporosis
6

Similar Publications

Background: Neuroendocrine carcinomas (NECs) are rare tumors from hormone-secreting neuroendocrine cells, often within the gastrointestinal tract. The authors report what is, to their best knowledge, the first case of a small intestine NEC metastasizing to the temporomandibular joint (TMJ).

Case Description: A 60-year-old man came to the oral medicine, oncology, and orofacial pain clinic with a chief concern of left-sided jaw pain.

View Article and Find Full Text PDF

Age-related alterations in the skeletal system are linked to decreased bone mass, a reduction in bone strength and density, and an increased risk of fractures and osteoporosis. Therapeutics are desired to stimulate bone regeneration and restore imbalance in the bone remodeling process. Quercetin (Qu), a naturally occurring flavonoid, induces osteogenesis; however, its solubility, stability, and bioavailability limit its therapeutic use.

View Article and Find Full Text PDF

Sonic Hedgehog potentiates BMP9-induced osteogenic differentiation of mesenchymal stem cells.

Genes Dis

May 2025

Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 40016, China.

Bone morphogenetic protein 9 (BMP9) has remarkable potential to induce the differentiation of mesenchymal stem cells (MSCs) towards the osteoblastic lineage. Additionally, research suggests that certain growth factors have the ability to potentiate BMP9-induced osteogenic differentiation of MSCs. Sonic Hedgehog (Shh) plays an indispensable role in the regulation of skeletal development.

View Article and Find Full Text PDF

Regulation of immune microenvironments by polyetheretherketone surface topography for improving osseointegration.

J Nanobiotechnology

March 2025

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, PR China.

Optimizing the immune microenvironment is essential for successful implant osseointegration. In this study, four different nano/microstructures were fabricated on polyetheretherketone (PEEK) substrates by varying the agitation speed during sulfonation to influence osteoimmunomodulation and implant integration. The results indicate that nano/microstructures with minimal dimensions (SP450) inhibit actin polymerization by reducing calcium influx through PIEZO1, activating the anti-inflammatory M2 macrophage phenotype.

View Article and Find Full Text PDF

Unveiling two distinct osteolineage cell populations linked to age-related osteoporosis in adult mice through integrative single-cell analyses.

Cell Mol Life Sci

March 2025

Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, 518055, China.

The bone marrow microenvironment contains heterogeneous stromal cells, which are critical for bone remodeling and provide essential supportive roles for hematopoietic functions. Although the diversity of PDGFRαβ mesenchymal stromal/stem cells (MSCs) get consensus, the osteo-lineage cells (OLCs) that constitute the developmental trajectory of osteoblasts are largely remain unclear. Here, we construct a comprehensive atlas of stromal cell via performing integrative single cell analyses for 77 samples from 14 datasets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!