The growing interest in gel-based additive manufacturing, also known as three-dimensional (3D) gel-printing technology, for research underscores the crucial need to develop robust biobased materials with excellent printing quality and reproducibility. The main focus of this study is to prepare and characterize some composite gels obtained with a low-molecular-weight gelling (LMWG) peptide called Fmoc-diphenylalanine (Fmoc-FF) and two types of cellulose nanofibrils (CNFs). The so-called Fmoc-FF peptide has the ability to self-assemble into a nanowire shape and therefore create an organized network that induces the formation of a gel. Despite their ease of preparation and potential use in biological systems, unfortunately, those Fmoc-FF nanowire gel systems cannot be 3D printed due to the high stiffness of the gel. For this reason, this study focuses on composite materials made of cellulose nanofibrils and Fmoc-FF nanowires, with the main objective being that the composite gels will be suitable for 3D printing applications. Two types of cellulose nanofibrils are employed in this study: (1) unmodified pristine cellulose nanofibrils (uCNF) and (2) chemically modified cellulose nanofibrils, which ones have been grafted with polymers containing the Fmoc unit on their backbone (CNF--Fmoc). The obtained products were characterized through solid-state cross-polarization magic angle-spinning H NMR and confocal laser scanning microscopy. Within these two CNF structures, two composite gels were produced: uCNF/Fmoc-FF and CNF--Fmoc/Fmoc-FF. The mechanical properties and printability of the composites are assessed using rheology and challenging 3D object printing. With the addition of water, different properties of the gels were observed. In this instance, CNF--Fmoc/Fmoc-FF ( = 5.1%) was selected as the most suitable option within this product range. For the composite bearing uCNF, exceptional print quality and mechanical properties are achieved with the CNF/Fmoc-FF gel ( = 5.1%). The structures are characterized by using field emission scanning electron microscopy (FESEM) and small-angle X-ray scattering (SAXS) measurements.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsabm.4c01803 | DOI Listing |
Nanoscale
March 2025
KTH Royal Institute of Technology, Department of Fiber and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Teknikringen 56, SE-100 44 Stockholm, Sweden.
Biobased cellulose nanofibrils (CNFs) constitute important building blocks for biomimetic, nanostructured materials, and considerable potential exists in their hybridization with tailorable polymeric nanoparticles. CNFs naturally assemble into oriented, fibrillar structures in their cross-section. This work shows that polymeric nanoparticle additives have the potential to increase or decrease orientation of these cellulose structures, which allows the control of bulk mechanical properties.
View Article and Find Full Text PDFSci Rep
March 2025
Cellulose and Wood Materials Laboratory, Empa - Swiss Federal Laboratories for Material Science and Technology, Dübendorf, Switzerland.
This study investigates lignocellulose nanofibrils (LCNF) as a sustainable alternative material for printed circuit board (PCB) substrates, demonstrating an application through the development of an eco-friendly computer mouse demonstrator. LCNF is derived from lignin-rich cellulose pulp, a side stream product of biorefinery processes, combining the natural strength of cellulose fibrils with lignin to enhance mechanical and electrochemical properties. The research outlines the process of fibrillating lignin-rich cellulose pulp at 10 kW/h per kg into LCNF, followed by thermal and pressure treatment (at Δp = 50 - 1500 kN, ΔT = 30 - 120 °C) to achieve a rigid PCB substrate.
View Article and Find Full Text PDFACS Nano
March 2025
Beijing Key Laboratory of Lignocellulosic Chemistry, Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China.
Inspired by the reinforcement mechanisms observed in biomaterials, cellulose/lignin composite membranes are prepared successfully by mixing nanolignin and nanocellulose and impregnating them with metal ion solution. Metal ion cross-linking and hydrogen bonds between cellulose and lignin create a robust cross-linking network. The composite films achieve a tensile strength of 223.
View Article and Find Full Text PDFACS Appl Bio Mater
March 2025
Institute of Wood Science, Universität Hamburg, Haidkrugsweg 1, 22885 Barsbüttel, Germany.
The growing interest in gel-based additive manufacturing, also known as three-dimensional (3D) gel-printing technology, for research underscores the crucial need to develop robust biobased materials with excellent printing quality and reproducibility. The main focus of this study is to prepare and characterize some composite gels obtained with a low-molecular-weight gelling (LMWG) peptide called Fmoc-diphenylalanine (Fmoc-FF) and two types of cellulose nanofibrils (CNFs). The so-called Fmoc-FF peptide has the ability to self-assemble into a nanowire shape and therefore create an organized network that induces the formation of a gel.
View Article and Find Full Text PDFInt J Biol Macromol
March 2025
Nuclear and Energy Research Institute, IPEN-CNEN/SP, Av. Prof. Lineu Prestes, 2242 - Cidade Universitária, CEP 05508-000, São Paulo, SP, Brazil.
This study investigates the potential of pineapple leaf fiber (PALF), as a renewable source, to produce cellulose nanofibrils (CNF) and cellulose nanocrystals (CNC), addressing a gap in the literature regarding optimal conditions for CNC extraction from PALF. Chemical analysis revealed a high α-cellulose content (78.14 %), making PALF suitable for nanocellulose production.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!