Microstructural Engineering Enables Record Thermal Endurance of Metal Oxide Thin Films in Extreme Environments.

Small

Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Key Laboratory of Micro- and Nano-Electro-Mechanical Systems of Shaanxi Province, School of Mechanical Engineering, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, 710000, China.

Published: March 2025

High-temperature thin-film sensors (HTTSs) offer promising solutions for in situ monitoring of various thermal and mechanical parameters in extreme environments. However, maintaining their stable operation at high temperatures exceeding 1000 °C for extended durations remains challenging due to severe material degradation. This study first demonstrates a microstructural engineering strategy to enhance the thermal endurance of metal oxide thin films through integrating high-melting-point metal oxide nanophases. Using standard Micro-Electro-Mechanical System (MEMS) technologies, alumina (AlO) is atomically integrated into indium tin oxide (ITO) thin films. The influence of AlO doping on the ITO matrix under various high-temperature conditions, with emphasis on the variations of chemical composition, crystal structure, morphology, recrystallization, and sensing behavior, is systematically investigated. An optimized film, characterized by an Al/In ratio of 1.57 wt.%, exhibits a record-low resistance drift of 0.002% h during a 10 h exposure at 1200 °C.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202500339DOI Listing

Publication Analysis

Top Keywords

metal oxide
12
thin films
12
microstructural engineering
8
thermal endurance
8
endurance metal
8
oxide thin
8
extreme environments
8
engineering enables
4
enables record
4
record thermal
4

Similar Publications

The links between soil and water pollution and cardiovascular disease.

Atherosclerosis

March 2025

University Medical Center Mainz, Department of Cardiology at the Johannes Gutenberg University, Germany; German Cardiovascular Research Center (DZHK), Partner Site Rhine Main, Mainz, Germany.

Soil and water pollution represent significant threats to global health, ecosystems, and biodiversity. Healthy soils underpin terrestrial ecosystems, supporting food production, biodiversity, water retention, and carbon sequestration. However, soil degradation jeopardizes the health of 3.

View Article and Find Full Text PDF

Programmable 2H-MoTe FGFET-Based CMOS Array.

Nano Lett

March 2025

State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China.

A programmable 2H-MoTe floating-gate field-effect transistor (FGFET)-based complementary metal oxide semiconductor (CMOS) array has been fabricated on the grown substrate. Coplanar grown metallic 1T'-MoTe serves as the source and drain electrodes. The conductive type of the 2H-MoTe channel is manipulated by a top-gate engineering method.

View Article and Find Full Text PDF

The sensitive, efficient, and simultaneous assay of creatinine and urea in different body fluid is crucial for the daily detection and treatment of chronic kidney disease. Here, we exploited a versatile composite surface enhanced Raman scattering (SERS) substrate of polydimethylsiloxane (PDMS)-flower-like ZIF-67@Ag nanoparticles (NPs) based on simple in-situ growth and ion sputtering strategies. The plasmonic Ag NPs assembled on the three-dimensional anisotropic ZIF-67 matrix, facilitating numerous resonant electromagnetic "hotspots".

View Article and Find Full Text PDF

Mass spectrometric monitoring of redox transformation and arylation of tryptophan.

Anal Chim Acta

May 2025

State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, Guangxi, 530004, PR China; College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, PR China; Medical College of Guangxi University, Guangxi University, Nanning, Guangxi, 530004, PR China; Center for Instrumental Analysis, Guangxi University, Nanning, Guangxi, 530004, PR China. Electronic address:

Tryptophan (Trp) is an essential amino acid obtained from human diet. It is involved not only in de novo biosynthesis of proteins but also in complex metabolic pathways. Redox transformation of tryptophan is under-explored in comparison with kynurenine, serotonin and indole pyruvate pathways.

View Article and Find Full Text PDF

Pre-enrichment-free electrochemical detection of lead ions using functionalized tungsten oxide: Integration of surface functionalization and redox cycling mechanisms.

Talanta

March 2025

State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130000, PR China. Electronic address:

Methods for electrochemical detection of heavy metal ions have garnered widespread attention due to their high sensitivity, ease of operation, low cost, and suitability for on-site detection. However, these methods typically require a pre-enrichment step to improve the detection limit and sensitivity, which increases operational complexity and introduces potential errors. In this study, tungsten oxide electrodes with various functional groups were prepared by electrodeposition and high-temperature annealing, utilizing the amphoteric properties of l-alanine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!