The human brain's neural network demonstrates exceptional efficiency in information processing and recognition, driving advancements in neuromimetic devices that emulate neuronal functions such as signal integration and parallel transmission. A key challenge remains in replicating these functions while minimizing energy consumption. Here, inspired by neuronal signal integration and axonal bidirectional transmission, mechano-driven hydrogel logic gates leveraging the piezoionic effect is presented, offering a novel bionic approach with significantly reduced power consumption. By exerting external force on the thick and thin sides of the geometrically asymmetric hydrogel, spike signals of differing amplitudes and opposite polarities can be generated, corresponding to '1' and '0', respectively. The differential mobility of anions and cations plays a crucial role in the piezoionic effect. This geometric asymmetry amplifies ion convection, improving force-to-electricity conversion efficiency, while the inclusion of salts with varying ion size can further enhance this disparity, even reversing the signal direction. Arranging asymmetric hydrogel iontronics in series-parallel configurations enables the emulation of complex neuronal logic operations, facilitating ionic spike signal addition and subtraction. This hydrogel-based logic control has been directly applied in human-machine interaction to control robot arms and offers significant potential for the advancement of artificial intelligence, robotics, and wearable technologies.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202409998DOI Listing

Publication Analysis

Top Keywords

asymmetric hydrogel
12
logic gates
8
geometrically asymmetric
8
hydrogel iontronics
8
signal integration
8
mechano-driven neuromimetic
4
logic
4
neuromimetic logic
4
gates established
4
established geometrically
4

Similar Publications

Janus hydrogels for human motion monitoring are thriving due to their conductivity, flexibility, anisotropy and self-adhesion, etc. However, most of them face challenges such as complex processes, interlayer detachment, and surface contamination, which degrade their sensing accuracy and sensitivity. Hence, this study proposes a facile strategy using the cellulose and lignin as building blocks to construct a Janus hydrogel for accurate and sensitive sensing.

View Article and Find Full Text PDF

The human brain's neural network demonstrates exceptional efficiency in information processing and recognition, driving advancements in neuromimetic devices that emulate neuronal functions such as signal integration and parallel transmission. A key challenge remains in replicating these functions while minimizing energy consumption. Here, inspired by neuronal signal integration and axonal bidirectional transmission, mechano-driven hydrogel logic gates leveraging the piezoionic effect is presented, offering a novel bionic approach with significantly reduced power consumption.

View Article and Find Full Text PDF

Muscle stem cells (MuSCs) play a crucial role in skeletal muscle regeneration, residing in a niche that undergoes dimensional and mechanical changes throughout the regeneration process. This study investigates how 3D confinement and stiffness encountered by MuSCs during the later stages of regeneration regulate their function, including stemness, activation, proliferation, and differentiation. An asymmetric 3D hydrogel bilayer platform is engineered with tunable physical constraints to mimic the regenerating MuSC niche.

View Article and Find Full Text PDF

Sensing-actuating integrated asymmetric multilayer hydrogel muscle for soft robotics.

Microsyst Nanoeng

March 2025

Department of Electromechanical Engineering and Centre for Artificial Intelligence and Robotics, University of Macau, 999078, Macau SAR, China.

Achieving autonomously responding to external stimuli and providing real-time feedback on their motion state are key challenges in soft robotics. Herein, we propose an asymmetric three-layer hydrogel muscle with integrated sensing and actuating performances. The actuating layer, made of p(NIPAm-HEMA), features an open pore structure, enabling it to achieve 58% volume shrinkage in just 8 s.

View Article and Find Full Text PDF

A Heterojunction Piezoelectric Antimicrobial Asymmetric Hydrogel for Dynamic Wound Healing and Monitoring.

Small

February 2025

Beijing Laboratory of Biomedical Materials, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.

Dynamic wound care presents significant challenges for conventional dressings due to the complex environment and high-frequency motion associated with such injuries. In this study, a multifunctional photo-crosslinked piezoelectric hydrogel (OAPS) is developed, incorporating heterojunction Se-doped KH570 modified BaTiO nanoparticles (Se-BT570 NPs) as a core component, and designed to address antimicrobial and monitoring needs in wound care, particularly at sites with high-frequency movement. The OAPS hydrogel effectively utilizes the inherent high-frequency motion in dynamic wounds, enhancing antimicrobial efficacy and enabling real-time monitoring of wound and human health statuses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!