Interaction of dimeric 14-3-3 proteins with phosphotargets regulates various physiological processes in plants, from flowering to transpiration and salt tolerance. Several genes express distinct 14-3-3 "isoforms," particularly numerous in plants, but these are unevenly studied even in model species. Here we systematically investigated twelve 14-3-3 isoforms from Arabidopsis thaliana. While all these proteins can homodimerize, four isoforms representing a supposedly more ancestral, epsilon phylogenetic group (iota, mu, omicron, epsilon), but not their eight non-epsilon counterparts (omega, phi, chi, psi, upsilon, nu, kappa, lambda), exhibit concentration-dependent monomerization, and pronounced surface hydrophobicity at physiologically relevant protein concentrations and under crowding conditions typical for the cell. We show that dramatically lowered thermodynamic stabilities entail aggregation of the epsilon group isoforms at near-physiological temperatures and accelerate their proteolytic degradation in vitro and in plant cell lysates. Mutations in 14-3-3 iota, inspired by structural analysis, helped us rescue non-epsilon behavior and pinpoint key positions responsible for the epsilon/non-epsilon demarcation. Combining two major demarcating positions (namely, 27th and 51st in omega) and differences in biochemical properties, we developed an epsilon/non-epsilon demarcation criterion that classified 89% of available 14-3-3 sequences from Dicots, Monocots, Gymnosperms, Ferns, and Lycophytes with 99.7% accuracy, and reliably predicted biochemical properties of a given 14-3-3 isoform, which we experimentally verified for distant 14-3-3 isoforms from Selaginella moellendorffii. The proven occurrence of isoforms of both groups in primitive plants refines the traditional phylogenetic, solely sequence-based analysis and provides intriguing insights into the evolutionary history of the epsilon phylogenetic group.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/tpj.70017 | DOI Listing |
Plant J
March 2025
A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russia.
Interaction of dimeric 14-3-3 proteins with phosphotargets regulates various physiological processes in plants, from flowering to transpiration and salt tolerance. Several genes express distinct 14-3-3 "isoforms," particularly numerous in plants, but these are unevenly studied even in model species. Here we systematically investigated twelve 14-3-3 isoforms from Arabidopsis thaliana.
View Article and Find Full Text PDFNat Commun
March 2025
Diabetes, Obesity and Metabolism Institute and Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
The Carbohydrate Response Element Binding Protein (ChREBP) is a glucose-responsive transcription factor (TF) with two major splice isoforms (α and β). In chronic hyperglycemia and glucolipotoxicity, ChREBPα-mediated ChREBPβ expression surges, leading to insulin-secreting β-cell dedifferentiation and death. 14-3-3 binding to ChREBPα results in cytoplasmic retention and suppression of transcriptional activity.
View Article and Find Full Text PDFInt J Biol Macromol
February 2025
Central European Institute of Technology, Masaryk University, Kamenice 5, Brno 625 00, Czechia; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, Brno 625 00, Czechia; Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno 625 00, Czechia. Electronic address:
The main role of dimeric 14-3-3 proteins is to modulate the activity of several hundred binding partners by interacting with phosphorylated residues of the partner proteins, often located in disordered regions. The inherent flexibility or large size of 14-3-3 complexes hampers their structural characterization by X-ray crystallography, cryo-electron microscopy (EM) and traditional solution nuclear magnetic resonance (NMR) spectroscopy. Here, we employ solution 1D F-Trp NMR spectroscopy to characterize substrate binding and dimerization of 14-3-3 proteins, focusing on 14-3-3ζ - an abundant human isoform as an example.
View Article and Find Full Text PDFMol Pharmacol
January 2025
Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan. Electronic address:
The emerging picture of G protein-coupled receptor function suggests that the global signaling response is an integrated sum of a multitude of individual receptor responses, each regulated by their local protein environment. The β2 adrenergic receptor (B2AR) has long served as an example receptor in the development of this model. However, the mechanism and the identity of the protein-protein interactions that govern the availability of receptors competent for signaling remain incompletely characterized.
View Article and Find Full Text PDFTheranostics
February 2025
The Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore General Hospital, 30 Hospital Boulevard, Singapore 168583.
The Ser/Thr kinase RAF, particularly BRAF isoform is a dominant target of oncogenic mutations and many mutations have been identified in various cancers. However, how these mutations except V600E evade the regulatory machinery of RAF protein and hence trigger its oncogenicity remains unclear. In this study, we used mutagenesis, peptide affinity assay, immunoprecipitation, immunoblot, and complementary split luciferase assay as well as mouse xenograft tumour model to investigate how the function of RAF is cooperatively regulated by Cdc37/Hsp90 chaperones and 14-3-3 scaffolds and how this regulatory machinery is evaded by prevalent non-V600 mutations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!