Monoclonal antibodies (mAbs) and antibody fragments have revolutionized medicine as highly specific binding agents and inhibitors. At the same time, several types of nanomaterials, including liposomes, lipid nanoparticles (NPs), polymersomes, metal and metal oxide NPs, and protein nanostructures, are increasingly utilized and explored for therapeutic potential due to their versatility, chemical and physical properties, and tunability. However, nanomaterials alone often lack specificity, leading to relatively low efficacy and/or high toxicity. To address this problem, a rapidly emerging area is antibody-nanomaterial conjugates (ANCs), which combine the precise targeting specificity of antibodies with the effector functionality of the nanomaterial. In this review, we give a brief introduction to mAbs and major conjugation techniques, describe major classes of nanomaterials being studied for therapeutic potential, and review the literature on ANCs of each class. Special focus is given to emerging applications including ANCs addressing the blood-brain barrier, ANCs delivering nucleic acids, and light-activated ANCs. While many disease targets are related to cancer, ANCs are also under development to address autoimmune, neurological, and infectious diseases. While important challenges remain, ANCs are poised to become a next-generation therapeutic technology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202409635 | DOI Listing |
Nat Prod Rep
March 2025
Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, 18 Science Drive 4, 117543, Singapore.
Covering: up to early 2025Privileged compound classes of anti-inflammatory natural products are those where there are many reported members that possess anti-inflammatory properties. The identification of these classes is of particular relevance to drug discovery, as they could serve as valuable starting points in developing effective and safe anti-inflammatory agents. The privileged compound classes of natural products include the polyphenols, coumarins, labdane diterpenoids, sesquiterpene lactones, isoquinoline and indole alkaloids, each offering a variety of molecular scaffolds and functional groups that enable diverse interactions with biological targets.
View Article and Find Full Text PDFActa Anaesthesiol Scand
April 2025
Department of Anesthesiology and Intensive Care Medicine, Institute of Clinical Sciences at the Sahlgrenska Academy, University of Gothenburg and Section for Cardiothoracic Anesthesia and Intensive Care, Sahlgrenska University Hospital, Gothenburg, Sweden.
Background: Acute kidney injury (AKI) is a serious complication after lung transplantation, but the reported incidence varies in the literature. No data on AKI have been published from the Swedish lung transplantation program.
Methods: The aim of our study was to investigate the incidence, perioperative risk factors, and effects of early postoperative acute kidney injury (Kidney Disease Improving Global Outcomes [KDIGO] criteria) after lung transplantation.
Cancer Med
March 2025
Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
Background: Tumor metastasis is one of the main causes of death in cancer patients; however, the mechanism controlling metastasis is unclear. The posttranscriptional regulation of metastasis-related genes mediated by AT-rich interactive domain-containing protein 4A (Arid4a), an RNA-binding protein (RBP), has not been elucidated.
Methods: Bioinformatic analysis, qRT-PCR, immunohistochemistry, and immunoblotting were employed to determine the expression of Arid4a in breast tumor tissues and its association with the survival of cancer patients.
Nanoscale
March 2025
Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, Guangdong, P. R. China.
Manganese (Mn)-based materials have been extensively investigated for a wide range of biomedical applications owing to their remarkable catalytic chemistry, magnetic resonance imaging (MRI) capacity, biodegradability, low toxicity, and good biosafety. In this review, we first elaborate on the catalytic principle of Mn-based nanoenzymes for antitumor and antibacterial therapy, followed by a comprehensive discussion of the interesting structural design engineering strategies used to achieve multi-dimensional Mn-based nanoarchitectures, such as zero-dimensional (0D) nanoparticles, 1D nanotubes, 2D nanosheets, 3D hollow porous Mn ball, and core-shell nanostructures. Moreover, the therapeutic applications of different Mn-based nanoenzymes, including manganese dioxide (MnO)-based nanoenzymes that can trigger catalytic reactions, Mn-doped metal nanoenzymes and Mn-coordinated nanoenzymes that promote hydroxyl/reactive oxygen species (ROS) generation, and MnO-based micro/nanorobots that can effectively penetrate tumor tissues, are critically reviewed.
View Article and Find Full Text PDFGeriatr Gerontol Int
March 2025
Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan.
Aim: Rehospitalization of patients with heart failure (HF) incurs high health care costs and increased mortality. Infection-related rehospitalizations in patients with HF occur frequently, and the risk increases with age. This study aimed to identify the factors associated with infection-related rehospitalizations in older patients with HF.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!