Background: The distribution of the m6A methylation modification on the transcriptome is highly regionally selective and is mainly concentrated in abnormally long exons and stop codons. However, in-depth research on the selective mechanism of m6A methylation is still lacking.

Methods: In this research, meRIP sequencing, mRNA sequencing, meRIP, luciferase reporter assays and CRISPR/Cas9 conditional knockout mice were used to elucidate the distribution characteristics of NFATc1 m6A.

Results: METTL14 controls osteoclast-mediated bone resorption by means of the methylation (4249 A) of the NFATc1 gene during osteoclast differentiation. Exon junction complexes (EJCs) selectively protect the m6A methylation sites of the NFATc1 gene. When the methylation sites are located within short exon fragments (50-200 nt), EJCs prevent their hypermethylation and degradation through the "shield effect"; when the methylation sites are located in the 3' UTR region or long exon fragments (greater than 300 nt), the "shield effect" disappears. Downstream, YTHDF2 induced the degradation of hypermethylation NFATc1 transcripts without site restriction.

Conclusions: EJCs act as "shields" to regulate the m6A region selectivity of the NFATc1 gene, thereby determining the characteristics of m6A distribution in the gene. Importantly, EJCs can raise the level of m6A methylation of NFATc1 and degrade its mRNA, thereby inhibiting osteoclast differentiation and preserving bone mass. These results will be helpful for identifying potential molecular targets for osteoporosis treatment.

Key Points: METTL14 controls osteoclast-mediated bone resorption by means of the methylation (4249 A) of the NFATc1 gene during osteoclast differentiation. Exon junction complexes (EJCs) protect the remaining methylation sites of the NFATc1 gene (located in the inner exon fragment of 50-200 nt) from hypermethylation and degradation. The "shield effect" disappears when the exon fragment is extended to 300 nt. Downstream, YTHDF2 induced the degradation of hypermethylation NFATc1 transcripts without site restriction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11885169PMC
http://dx.doi.org/10.1002/ctm2.70266DOI Listing

Publication Analysis

Top Keywords

nfatc1 gene
20
"shield effect"
16
m6a methylation
16
methylation sites
16
exon junction
12
junction complexes
12
bone resorption
12
osteoclast differentiation
12
nfatc1
10
methylation
9

Similar Publications

Muscle disuse results in complex signaling alterations followed by structural and functional changes, such as atrophy, force decrease and slow-to-fast fiber-type shift. Little is known about human skeletal muscle signaling alterations under long-term muscle disuse. In this study, we describe the effects of 21-day dry immersion on human postural soleus muscle.

View Article and Find Full Text PDF

Quercetagetin alleviates inflammatory osteoclastogenesis and collagen antibody-induced arthritis via Nrf2 signaling and Pten/AKT/Nfatc1 axis.

Arthritis Res Ther

March 2025

Department of Joint Surgery, Cheeloo College of Medicine, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250012, China.

Purpose: Quercetagetin, a flavonoid derived from the natural herb Flos eriocauli, is used in traditional Chinese medicine for its fire-purging (anti-inflammation) and wind-expelling (pain-alleviating) properties. However, its potential effects concerning rheumatoid arthritis (RA) remain underexplored. This study was designed to elucidate the potential associations between Quercetagetin and RA, establishing the therapeutic potential of Quercetagetin and related mechanisms in RA treatment.

View Article and Find Full Text PDF

Background: The distribution of the m6A methylation modification on the transcriptome is highly regionally selective and is mainly concentrated in abnormally long exons and stop codons. However, in-depth research on the selective mechanism of m6A methylation is still lacking.

Methods: In this research, meRIP sequencing, mRNA sequencing, meRIP, luciferase reporter assays and CRISPR/Cas9 conditional knockout mice were used to elucidate the distribution characteristics of NFATc1 m6A.

View Article and Find Full Text PDF

Genome-wide scan for selection signatures reveals novel insights into the adaptive capacity characteristics in three Chinese cattle breeds.

BMC Genomics

February 2025

Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, P.R. China.

Background: Cattle have evolved genetic adaptations to a diverse range of agroecological zones, such as plateaus and arid zones. However, little is known about its genetic basis of adaptation to harsh environments within a short period of time after domestication. Here, we analyzed whole-genome sequence data from three indigenous cattle breeds (Anxi, Qaidam and Zhangmu) in northwest China and five worldwide cattle breeds (Angus, Holstein, Jersey, Gir and N'Dama) to explore their genetic composition and identify selective sweeps in the Chinese cattle breeds.

View Article and Find Full Text PDF

Background: Osteoporosis (OP), as the prevalent systemic metabolic bone disease worldwide, progresses insidiously and slowly. The clinical discomfort and complications associated with OP impose a significant burden on patients. Therefore, finding more effective treatments for OP remains an urgent challenge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!