Alternative stable states of microbiome structure and soil ecosystem functions.

Environ Microbiome

Laboratory of Ecosystems and Coevolution, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan.

Published: March 2025

Background: Theory predicts that biological communities can have multiple stable states in terms of their species/taxonomic compositions. The presence of such alternative stable states has been examined in classic ecological studies on the communities of macro-organisms (e.g., distinction between forest and savanna vegetation types). Nonetheless, it remains an essential challenge to extend the target of the discussion on multistability from macro-organismal systems to highly species-rich microbial systems. Identifying alternative stable states of taxonomically diverse microbial communities is a crucial step for predicting and controlling microbiome processes in light of classic ecological studies on community stability.

Results: By targeting soil microbiomes, we inferred the stability landscapes of community structure based on a mathematical framework of statistical physics. We compiled a dataset involving 11 archaeal, 332 bacterial, and 240 fungal families detected from > 1,500 agroecosystem soil samples and applied the energy landscape analysis to estimate the stability/instability of observed taxonomic compositions. The statistical analysis suggested that both prokaryotic and fungal community structure could be classified into several stable states. We also found that the inferred alternative stable states differed greatly in their associations with crop disease prevalence in agroecosystems. We further inferred "tipping points", through which transitions between alternative stable states could occur.

Conclusion: Our results suggest that the structure of complex soil microbiomes can be categorized into alternative stable states, which potentially differ in ecosystem-level functioning. Such insights into the relationship between structure, stability, and functions of ecological communities will provide a basis for ecosystem restoration and the sustainable management of agroecosystems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11887376PMC
http://dx.doi.org/10.1186/s40793-025-00688-4DOI Listing

Publication Analysis

Top Keywords

stable states
32
alternative stable
24
states
8
classic ecological
8
ecological studies
8
soil microbiomes
8
community structure
8
stable
7
alternative
6
structure
5

Similar Publications

Hard carbon is the sole anode material employed in commercial sodium-ion batteries. However, its intrinsic defects and impurities will lead to battery failure, diminishing further development of sodium batteries in energy storage. Here, an acrylonitrile copolymer and poly(ethylene oxide) (LA/PEO) composite binder is developed to address these challenges in biomass-derived hard carbon.

View Article and Find Full Text PDF

Unraveling Compressive Strain and Oxygen Vacancy Effect of Iridium Oxide for Proton-Exchange Membrane Water Electrolyzers.

Adv Mater

March 2025

Key Laboratory of Light Energy Conversion Materials of Hunan Province College, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081, China.

Iridium-based electrocatalysts are commonly regarded as the sole stable operating acidic oxygen evolution reaction (OER) catalysts in proton-exchange membrane water electrolysis (PEMWE), but the linear scaling relationship (LSR) of multiple reaction intermediates binding inhibits the enhancement of its activity. Herein, the compressive strain and oxygen vacancy effect exists in iridium dioxide (IrO)-based catalyst by a doping engineering strategy for efficient acidic OER activity. In situ synchrotron characterizations elucidate that compressive strain can enhance Ir─O covalency and reduce the Ir─Ir bond distance, and oxygen vacancy (O) as an electronic regulator causes rapid adsorption of water molecules on the Ir and adjacent Ov (Ir─O) pair site to be coupled directly into O─O intermediates.

View Article and Find Full Text PDF

Architecting of All-Cellulose-Based Wicking Fabric for a Large-Scale, Low-Cost, and Highly Efficient Solar Desalination Evaporator.

ACS Nano

March 2025

Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, PR China.

Interfacial solar vapor generation (ISVG) technology has been considered a promising and sustainable strategy for seawater desalination and wastewater treatment. However, its practical application is greatly limited due to severe salt accumulation and poor long-term evaporation stability. Herein, an all-cellulose-based wicking fabric (CB@CA/CF) is fabricated via a breath figure template (BFT) method for high-performance and stable desalination.

View Article and Find Full Text PDF

Agrochemicals play a pivotal role in the management of pests and diseases and the way agrochemicals are utilized exerts significant impacts on the environment. Ensuring rational application and improving utilization rates of agrochemicals are major demands in developing green delivery systems. Herein, a model of nucleic acid-peptide coacervate (NPC) for agrochemical delivery is presented, which is formed by mixing negatively charged single-stranded DNAs with positively charged poly-L-lysine.

View Article and Find Full Text PDF

Objective: To examine the association of ADHD and LD with visual impairment, uncorrected refractive error, and refractive error (myopia, hyperopia, and astigmatism) among US children and adolescents.

Method: A population-based cross-sectional study included 3,385 participants aged 12-15 years from the large, representative sample of US NHANES. The diagnoses of ADHD and LD in children and adolescents, as reported by parents or adolescents themselves, were analyzed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!