Injectable celastrol-loading emulsion hydrogel for immunotherapy of low-immunogenic cancer.

J Nanobiotechnology

Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, #79 Qingchun Road, Hangzhou, 310003, China.

Published: March 2025

Immunotherapy, exemplified by immune checkpoint blockade (ICB), has been extensively employed in antitumor treatments. Nevertheless, its efficacy in addressing low-immunogenic tumors has not yielded satisfactory results, primarily due to the depletion and inadequate infiltration of effector T cells within the tumor microenvironment (TME). Here, we construct an injectable water-in-oil emulsion hydrogel to load clinically used Celastrol (Gel@Cel), which addresses the limitations of Cel's hydrophobicity. Cel can both inhibit tumor cell proliferation and promote tumor cell apoptosis, while simultaneously inducing immunogenic cell death, through activation of the AKT and MAPK pathways. In a model of clinically refractory hepatocellular carcinoma with malignant ascites, intraperitoneal administration of Gel@Cel significantly inhibits tumor progression and activates antitumor immune effects through lipase-controlled release of Cel, as compared to free Cel. Intriguingly, the Gel@Cel induces the activation of dendritic cells, resulting in the infiltration of cytotoxic T cells in the TME of ascites. Furthermore, the administration of Cel increases the expression of programmed cell death protein ligand-1 (PD-L1) in tumor cells. Moreover, combining the PD-1 antibody (αPD-1) with Gel@Cel further enhances the antitumor effect and amplifies the immune activation. In conclusion, Gel@Cel exhibits promising therapeutic potential in the treatment of low-immunogenic tumors, especially when combined with ICB therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11887069PMC
http://dx.doi.org/10.1186/s12951-025-03154-yDOI Listing

Publication Analysis

Top Keywords

emulsion hydrogel
8
low-immunogenic tumors
8
tumor cell
8
cell death
8
tumor
5
gel@cel
5
injectable celastrol-loading
4
celastrol-loading emulsion
4
hydrogel immunotherapy
4
immunotherapy low-immunogenic
4

Similar Publications

Injectable celastrol-loading emulsion hydrogel for immunotherapy of low-immunogenic cancer.

J Nanobiotechnology

March 2025

Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, #79 Qingchun Road, Hangzhou, 310003, China.

Immunotherapy, exemplified by immune checkpoint blockade (ICB), has been extensively employed in antitumor treatments. Nevertheless, its efficacy in addressing low-immunogenic tumors has not yielded satisfactory results, primarily due to the depletion and inadequate infiltration of effector T cells within the tumor microenvironment (TME). Here, we construct an injectable water-in-oil emulsion hydrogel to load clinically used Celastrol (Gel@Cel), which addresses the limitations of Cel's hydrophobicity.

View Article and Find Full Text PDF

Droplet microfluidics has emerged as a versatile and powerful tool for various analytical applications, including single-cell studies, synthetic biology, directed evolution, and diagnostics. Initially, access to droplet microfluidics was predominantly limited to specialized technology labs. However, the landscape is shifting with the increasing availability of commercialized droplet manipulation technologies, thereby expanding its use to non-specialized labs.

View Article and Find Full Text PDF

A clinical need exists for more effective intravitreal (IVT) drug delivery systems (DDS). This study tested the hypothesis that a novel biodegradable, injectable microsphere-hydrogel drug delivery system loaded with aflibercept (aflibercept-DDS) would exhibit long-term safety and biocompatibility in a non-human primate (NHP) model. We generated aflibercept-loaded poly (lactic-co-glycolic acid) microparticles with a modified double emulsion technique then embedded them into a biodegradable, thermo-responsive poly (ethylene glycol)-co-(L-lactic-acid) diacrylate/N-isopropylacrylamide hydrogel.

View Article and Find Full Text PDF

Vitamin deficiencies pose a significant global health challenge, leading to various health issues and economic burdens. These challenges arise with the delivery of fat-soluble vitamin (FSV) due to its poor stability against the environmental stimuli. The commercial fortification methods such as Pickering emulsion (PE), hydrogel and others offer a potential solution over the limitations of conventional vitamin delivery methods (degradation and poor bioavailability).

View Article and Find Full Text PDF

Hydrogels are an important class of biomaterials that are being developed for use in medicine, such as in drug delivery and tissue engineering applications. To improve properties (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!