Background: Sarcoglycanopathies are muscle dystrophies caused by mutations in the genes encoding sarcoglycans (α, β, γ, and δ) that can destabilize the dystrophin-associated glycoprotein complex at the sarcolemma, leaving muscle fibers vulnerable to damage after contraction, followed by inflammatory and fibrotic responses and resulting in muscle weakness and atrophy. Two signaling pathways have been implicated in fibrosis and inflammation in various tissues: autotaxin/lysophosphatidic acid (ATX-LPA) and yes-associated protein 1/transcriptional co-activator with PDZ-binding motif (YAP/TAZ). LPA, synthesized by ATX, can act as a pleiotropic molecule due to its multiple receptors. Two Hippo pathway effectors, YAP/TAZ, can be dephosphorylated by LPA and translocated to the nucleus. They induce several target genes, such as CCN2/CTGF, involved in fibrosis and inflammation. However, no detailed characterization of these processes or whether these pathways change early in the development of sarcoglycanopathy has been evaluated in skeletal muscle.
Methods: Using the δ-sarcoglycan knockout mouse model (Sgcd), we investigated components of these pathways, inflammatory and fibrotic markers, and contractile properties of different skeletal muscles (triceps-TR, gastrocnemius-GST, diaphragm-DFG, tibialis anterior-TA, and extensor digitorum longus-EDL) at one and two months of age.
Results: We found that Sgcd mice show early dystrophic features (fiber damage/necrosis, centrally nucleated fibers, inflammatory infiltrate, and regenerated fibers) followed by later fiber size reduction in TR, GST, and DFG. These changes are concomitant with an early inflammatory and fibrotic response in these muscles. Sgcd mice also have early impaired force generation in the TA and EDL, and resistance to mechanical damage in the EDL. In addition, an early dysregulation of the ATX-LPA axis and the YAP/TAZ signaling pathway in the TR, GST, and DFG was observed in these mice.
Conclusions: The ATX-LPA axis and the YAP/TAZ signaling pathway, which are involved in inflammation and fibrosis, are dysregulated in skeletal muscle from an early age in Sgcd mice. These changes are concomitant with a fibrotic and inflammatory response in these mice. Unraveling the role of the LPA axis and YAP/TAZ in sarcoglycanopathy holds great promise for improving our understanding of disease pathogenesis and identifying novel therapeutic targets for this currently incurable group of muscle disorders.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11884125 | PMC |
http://dx.doi.org/10.1186/s13395-025-00375-5 | DOI Listing |
Skelet Muscle
March 2025
Centro Científico y Tecnológico de Excelencia, Ciencia & Vida, 8580702, Santiago, Chile.
Background: Sarcoglycanopathies are muscle dystrophies caused by mutations in the genes encoding sarcoglycans (α, β, γ, and δ) that can destabilize the dystrophin-associated glycoprotein complex at the sarcolemma, leaving muscle fibers vulnerable to damage after contraction, followed by inflammatory and fibrotic responses and resulting in muscle weakness and atrophy. Two signaling pathways have been implicated in fibrosis and inflammation in various tissues: autotaxin/lysophosphatidic acid (ATX-LPA) and yes-associated protein 1/transcriptional co-activator with PDZ-binding motif (YAP/TAZ). LPA, synthesized by ATX, can act as a pleiotropic molecule due to its multiple receptors.
View Article and Find Full Text PDFSci Adv
August 2023
Department of Pediatrics, Cincinnati Children's Hospital and the University of Cincinnati, Cincinnati, OH, USA.
Mitochondrial permeability transition pore (MPTP) formation contributes to ischemia-reperfusion injury in the heart and several degenerative diseases, including muscular dystrophy (MD). MD is a family of genetic disorders characterized by progressive muscle necrosis and premature death. It has been proposed that the MPTP has two molecular components, the adenine nucleotide translocase (ANT) family of proteins and an unknown component that requires the chaperone cyclophilin D (CypD) to activate.
View Article and Find Full Text PDFJ Mol Histol
August 2023
Subdirección de Enseñanza e Investigación, Centro Médico Nacional "20 de Noviembre", Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Mexico City, Mexico.
Skeletal muscle (SkM) comprises slow and fast-twitch fibers, which differ in molecular composition, function, and systemic energy consumption. In addition, muscular dystrophies (DM), a group of diverse hereditary diseases, present different patterns of muscle involvement, progression, and severity, suggesting that the regeneration-degeneration process may differ depending on the muscle type. Therefore, the study aimed to explore the expression of proteins involved in the repair process in different muscles at an early stage of muscular dystrophy in the δ-sarcoglycan null mice (Sgcd-null), a limb-girdle muscular dystrophy 2 F model.
View Article and Find Full Text PDFESC Heart Fail
October 2022
Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, 060-8543, Japan.
Aims: The role of necroptosis in dilated cardiomyopathy (DCM) remains unclear. Here, we examined whether phosphorylation of mixed lineage kinase domain-like protein (MLKL), an indispensable event for execution of necroptosis, is associated with the progression of DCM.
Methods And Results: Patients with DCM (n = 56, 56 ± 15 years of age; 68% male) were enrolled for immunohistochemical analyses of biopsies.
Exp Anim
August 2020
Laboratory of Animal Models for Human Diseases, National Institutes of Biomedical Innovation, Health and Nutrition,7-6-8 Saito-Asagi, Ibaraki, Ibaraki, Osaka 568-0085, Japan.
Transgene insertion patterns are critical for the analysis of transgenic animals because the influence of transgenes may change depending on the insertion pattern (such as copy numbers and orientations of concatenations) and the insertion position in the genome. We previously reported a genomic walking strategy to locate transgenes in the genomes of transgenic mice (Exp. Anim.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!