Background: Mobilization of transposable elements (TEs) can generate large effect mutations. However, due to the difficulty of detecting new TE insertions in genomes and the typically rare occurrence of transposition, the actual rate, distribution, and population dynamics of new insertions remain largely unexplored.
Results: We present a TE display sequencing approach that leverages target amplification of TE extremities to detect non-reference TE insertions with high specificity and sensitivity, enabling the detection of insertions at frequencies as low as 1 in 250,000 within a DNA sample. Moreover, this method allows the simultaneous detection of insertions for distinct TE families, including both retrotransposons and DNA transposons, enhancing its versatility and cost-effectiveness for investigating complex "mobilomes." When combined with nanopore sequencing, this approach enables the identification of insertions using long-read information and achieves a turnaround time from DNA extraction to insertion identification of less than 24 h, significantly reducing the time-to-answer. By analyzing a population of Arabidopsis thaliana plants undergoing a transposition burst, we demonstrate the power of the multiplex TE display sequencing to analyze "evolve and resequence" experiments. Notably, we find that 3-4% of de novo TE insertions exhibit recurrent allele frequency changes indicative of either positive or negative selection.
Conclusions: TE display sequencing is an ultra-sensitive, specific, simple, and cost-effective approach for investigating the rate and landscape of new TE insertions across multiple families in large-scale population experiments. We provide a step-by-step experimental protocol and ready-to-use bioinformatic pipelines to facilitate its straightforward implementation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11887134 | PMC |
http://dx.doi.org/10.1186/s13059-025-03512-x | DOI Listing |
Plant Dis
March 2025
North Minzu University, College of Biological Science and Engineering, Yinchuan, Ningxia, China;
Goji berry (Lycium barbarum L.) is a fruit with high nutritional and medicinal value, widely cultivated in northwest China (Wang et al. 2023).
View Article and Find Full Text PDFJ Genet Eng Biotechnol
March 2025
Department of Veterinary Parasitology, College of Veterinary Science, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana 125004, India.
The hard tick Hyalomma dromedarii, a vector for numerous animal and human pathogens, was investigated for genetic diversity using the mitochondrial cytochrome C oxidase subunit I (cox I) and 16S ribosomal RNA (16S rRNA) genes. Hyalomma dromedarii sequences (n = 11 cox I; n = 7 16S rRNA) were deposited in GenBank (LC761179-89, LC761173-78, LC654692), showing 99.52-100 % (cox I) and 98.
View Article and Find Full Text PDFThe development of targeted therapy for patients with multiple myeloma (MM) is hampered by the low frequency of actionable genetic abnormalities. Gain or amplification of chromosome 1q (1q+) is the most frequent arm-level copy number gain in patients with MM and is associated with higher risk of progression and death despite recent therapeutic advances. Thus, developing targeted therapy for MM patients with 1q+ stands to benefit a large portion of patients in need of more effective management.
View Article and Find Full Text PDFJ Immunol
February 2025
Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD, United States.
Functional alterations with age are observed in all human systems, but the aging of the adaptive immune system displays both general changes affecting all individuals, and idiosyncratic changes that are unique to individuals. In the T cell compartment, general aging manifests in three ways: (1) the reduction of naïve T cells, (2) the accumulation of differentiated memory T cells, and (3) a reduced overall T cell receptor (TCR) repertoire. Idiosyncratic impacts of aging, such as changes in the TCR repertoires of altered memory and naïve T cells are shaped by each person's life exposures.
View Article and Find Full Text PDFJAMA Dermatol
March 2025
Service de Dermatologie et Allergologie, Faculté de Médecine, Sorbonne Université, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, Paris, France.
Importance: VEXAS syndrome (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) is a monogenic disease caused by UBA1 somatic variants in hematopoietic progenitor cells, mostly involving adult men. It is associated with inflammatory-related symptoms, frequently involving the skin and hematological disorders. Recently described myelodysplasia cutis (MDS-cutis) is a cutaneous manifestation of myelodysplasia in which clonal myelodysplastic cells infiltrate the skin.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!