An exploration of the ocular mysteries linking nanoparticles to the patho-therapeutic effects against keratitis.

J Nanobiotechnology

School of Science, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China.

Published: March 2025

Microbial keratitis, a sight-threatening corneal infection, remains a significant global health concern. Conventional therapies using antimicrobial agents often suffers from limitations such as poor drug penetration, side effects, and occurrence of drug resistance, with poor prognosis. Novel treatment techniques, with their unique properties and targeted delivery capabilities, offers a promising solution to overcome these challenges. This review delves into timely update of the state-of-the-art advance therapeutics for keratitis treatment. The diverse microbial origins of keratitis, including viral, bacterial, and fungal infections, exploring their complex pathogenic mechanisms, followed by the drug resistance mechanisms in keratitis pathogens are reviewed briefly. Importantly, the emerging therapeutic techniques for keratitis treatment including piezodynamic therapy, photothermal therapy, photodynamic therapy, nanoenzyme therapy, and metal ion therapy are summarized in this review showcasing their potential to overcome the limitations of traditional treatments. The challenges and future directions for advance therapies and nanotechnology-based approaches are discussed, focusing on safety, targeting strategies, drug resistance, and combination therapies. This review aims to inspire researchers to revolutionize and accelerate the development of functional materials using different therapies for keratitis treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11887204PMC
http://dx.doi.org/10.1186/s12951-025-03230-3DOI Listing

Publication Analysis

Top Keywords

drug resistance
12
keratitis treatment
12
keratitis
7
therapy
5
exploration ocular
4
ocular mysteries
4
mysteries linking
4
linking nanoparticles
4
nanoparticles patho-therapeutic
4
patho-therapeutic effects
4

Similar Publications

The global incidence of biliary tract cancer (BTC) is on the rise, presenting a substantial healthcare challenge. The integration of immune checkpoint inhibitors (ICIs) with molecularly targeted therapies is emerging as a strategy to enhance immune responses. However, the efficacy and underlying mechanisms of these treatments in BTC are still largely unexplored.

View Article and Find Full Text PDF

Multidrug resistance (MDR) infectious wounds are a major concern due to drug resistance, leading to increased patient morbidity. Lichenysin (LCN), a lipopeptide and biosurfactant obtained from certain strains of , has demonstrated an excellent antimicrobial property. The present study focuses on the fabrication and comprehensive evaluation of LCN-incorporated poly(vinyl alcohol) (PVA)/polycaprolactone (PCL)-based nanofiber scaffolds using an electrospinning technique as a potential wound healing biomaterial for the treatment of MDR infectious wounds in diabetic rats.

View Article and Find Full Text PDF

Integrating Genomic, Transcriptomic, and Phenotypic information to Explore Drug Resistance in Mycobacterium tuberculosis sub-lineage 4.2.2.2.

J Appl Microbiol

March 2025

Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Science, Addis Ababa University, P.O.Box 9086, Addis Ababa, Ethiopia.

Aims: Mycobacterium tuberculosis (Mtb) remains a major global health challenge, particularly due to increasing drug resistance. Beyond the well-characterized mutations, the mechanisms involved in driving resistance appear to be more complex. This study investigated the differential gene expression of Ethiopian drug-resistant Mtb sub-lineage 4.

View Article and Find Full Text PDF

Exploration of crucial stromal risk genes associated with prognostic significance and chemotherapeutic opportunities in invasive ductal breast carcinoma.

J Genet Eng Biotechnol

March 2025

State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, China; Department of Hepatobiliary and Echinococcosis Surgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China. Electronic address:

Background: Few studies revealed that stromal genes regulate the tumor microenvironment (TME). However, identification of key-risk genes in the invasive ductal breast carcinoma-associated stroma (IDBCS) and their associations with the prediction of risk group remains lacking.

Methods: This study used the GSE9014, GSE10797, GSE8977, GSE33692, and TGGA BRCA datasets.

View Article and Find Full Text PDF

The 2017 World Health Organization classification described aggressive pituitary neuroendocrine tumor (PitNET) as "a tumor with strong invasiveness and rapid growth, which is difficult to treat with surgery, radiation therapy, or drug therapy," which remains a challenge in the treatment of pituitary tumors. Currently, temozolomide (TMZ) is the first-line treatment for aggressive PitNET. However, it is not yet covered by insurance in Japan.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!