Submovements in manual tracking: people with Parkinson's disease produce more submovements than age-matched controls.

J Neuroeng Rehabil

Department Physical Therapy, Stanlyer Steyer School of Health Professions, Faculty of Medical and Health Sciences, Tel Aviv University, Ramat-Aviv, Tel-Aviv, 6997801, Israel.

Published: March 2025

Background: In general, people are unable to produce slow, smooth movements - as movements become slower (i.e., with longer durations), they become jerkier. A hallmark feature of Parkinson's disease is bradykinesia - slowness of movement. In this study, we investigate the intersection of these two observations - how do people with Parkinson's disease (PwP) perform in a slow tracking task, and how does it vary as a function of movement frequency? On the one hand, as PwP move more slowly in day-to-day life, they may be better in a slow tracking task. On the other hand, their general impairment in movement production may lead to worse tracking outcomes.

Methods: We used a well-tested tracking task known as the one-person mirror game, where participants control the left-right movement of an ellipse on a graphics tablet. They did so using a stylus and were instructed to match the horizontal location of a stimulus, an ellipse moving in a sinusoidal fashion at different movement frequencies and peak velocities. We calculated the submovement rate, identifying both type 2 (acceleration zero crossings) and type 3 (jerk zero crossings) from the trajectories, as well as relative position error (dX) and mean timing error (dT). To account for age-related performance decline, we tested three groups: PwP (N = 31), age-matched controls (OC; N = 29), and younger controls (YC; N = 30) in a cross-sectional study, and used mixed-design ANOVAs to compare across groups and movement frequencies.

Results: We reproduced earlier results showing that slow movements (i.e., with lower frequencies) require more submovements to track. PwP also generally performed more submovements than the other two groups, but only for type 3 submovements, whereas OC and YC performed submovements at a similar rate. Younger controls (YC) performed fewer tracking errors than older participants (both PwP and OC), and OC performed better than PwP.

Conclusions: The ability to smoothly track showed an age-related decline, with PwP producing more errors and using more submovements. This may be due to reduced automaticity in movement production. The findings of the study can be used to guide optimal movement frequencies for motor training for older adults and PwP.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11884197PMC
http://dx.doi.org/10.1186/s12984-025-01592-1DOI Listing

Publication Analysis

Top Keywords

parkinson's disease
12
tracking task
12
people parkinson's
8
age-matched controls
8
movement
8
slow tracking
8
movement production
8
movement frequencies
8
younger controls
8
performed submovements
8

Similar Publications

The release of synaptic vesicles (SVs) at the synaptic junction is a complex process involving various specialized proteins that work in unison. Among these, Bassoon has emerged as a significant protein, particularly noted for its association with various neurological and aging-related diseases. Due to its structural and functional roles, Bassoon has become a focus of recent research, especially in understanding its implications in neurodegenerative and psychiatric disorders.

View Article and Find Full Text PDF

Hemispheric asymmetry in neurodegenerative diseases.

Handb Clin Neurol

March 2025

University School for Advanced Studies (IUSS-Pavia), Pavia, Italy; Dementia Research Center, IRCCS Mondino Foundation, Pavia, Italy. Electronic address:

Hemispheric asymmetry in pathologic involvement is frequently observed in neurodegenerative disorders (NDD) and is responsible for differences in cognitive and motor clinical manifestations in individual patients. While asymmetry is modest in typical Alzheimer disease (AD), atypical AD presentations with prominent language impairment [logopenic/phonologic variant of primary progressive aphasia (L/Phv-PPA)] are associated with prevalent involvement of the language-dominant hemisphere. Similarly, in the frontotemporal dementia-amyotrophic lateral sclerosis (FTD-ALS) spectrum, the semantic (Sv) and nonfluent/agrammatic (Nf/Av) variants of PPA are due to asymmetric pathology involving the language-dominant hemisphere.

View Article and Find Full Text PDF

Neuronal degeneration, mitochondrial dysfunction, and disturbance of movements induced by rotenone in the ascidian Styela plicata.

Neurotoxicology

March 2025

Laboratório Integrado de Biociências Translacionais, Instituto de Biodiversidade e Sustentabilidade - NUPEM, Universidade Federal do Rio de Janeiro - UFRJ, Macaé, Rio de Janeiro, 27965-045, Brazil; Pós-Graduação Multicêntrico em Ciências Fisiológicas, Instituto de Biodiversidade e Sustentabilidade - NUPEM, Universidade Federal do Rio de Janeiro - UFRJ, Macaé, Rio de Janeiro, 27965-045, Brazil. Electronic address:

Parkinson's disease (PD), a movement disorder caused by dopaminergic degeneration in the midbrain, has been induced in various organisms after injection of different neurotoxins, such as rotenone (ROT), which affect mitochondrial complex I. Due to the conserved characteristics of ascidians, these animals constitute an interesting model for comparative and genetic studies of neurodegenerative diseases. In this study, we investigated the effects of ROT on the ascidian nervous system, evaluating apoptosis, catecholaminergic enzymes, behavioral deficits, and mitochondrial dysfunction.

View Article and Find Full Text PDF

Objectives: To examine the effect of integrated motor learning clinical pilates protocol we developed for patients with Parkinson's Disease (pwPD) on providing enduring motor skills in walking, balance, reaction time, cadence, and functional mobility at 3-months follow-up.

Design: A parallel-group, randomized controlled trial (RCT).

Setting: XXX Medical Center, XXX, and XXX Physiotherapy and Rehabilitation Center, Nicosia.

View Article and Find Full Text PDF

Erianin isolated from Dendrobium huoshanense alleviated neuroinflammation in MPTP-induced Parkinson's disease model via NF-κB/NLRP3 pathway.

J Ethnopharmacol

March 2025

School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China; Key Laboratory of Chinese Medicinal Resource and Chinese Herbal Compound of the Ministry of Education, Hubei University of Chinese Medicine, Wuhan, 430065, China; Center of Traditional Chinese Medicine Modernization for Liver Diseases, Hubei University of Chinese Medicine, Wuhan, 430065, China; Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, 430065, China. Electronic address:

Ethnopharmacological Relevance: Parkinson's disease (PD) is one of the most common neurodegenerative disorders, yet effective therapeutic options remain limited. Dendrobium huoshanense (DH), a medicinal and edible herb mainly distributed in Ta-pieh Mountains of Central China, has been used to treat disorders of consciousness and chronic nervous diseases in the local hospital for thousands of years. Erianin, a bioactive bibenzyl compound isolated from DH, has emerged as a potential neuroprotective agent due to its anti-inflammatory and antioxidant properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!