Lipopolysaccharide (LPS) is known to induce cell injury and mitochondrial dysfunction, which are pivotal in neuroinflammation and related disorders. Recent studies have demonstrated the potential of nicotinamide mononucleotide (NMN) and poly(ADP-ribose) polymerase-1 (PARP1) inhibitors to enhance mitochondrial function. However, the underlying mechanisms have not been fully elucidated. This study investigates the impact of NMN in conjunction with PJ-34, a PARP1 inhibitor, on LPS-induced mitochondrial damage, focusing on nicotinamide mononucleotide adenylyl transferase 3 (NMNAT3) -PARP1 axis. The results showed that LPS treatment led to down-regulation of NMNAT3 (decreased 58.72% at 1 µM), up-regulation of PARP1 (enhanced 22.78% at 1 µM), thereby impairing mitophagy and mitochondrial function. The negative effects can be mitigated through supplementation with NMN and PJ-34. Specifically, compared to the LPS group, the expression of NMNAT3 increased by 63.29% and PARP1 decreased by 27.94% at a concentration of 400 µM NMN. Additionally, when 400 µM NMN was combined with 5 µM PJ-34, PARP1 expression decreased by 21.99%. Mechanistic studies reveal that NMN and PJ-34 counteracted the detrimental effects by promoting the binding of FoxO1 to the PINK1 promoter to activate the PINK1/Parkin mediated mitophagy pathway. Further experimental results demonstrate that the down-regulation of NMNAT3 can activate PARP1 and inhibit the initiation of autophagic processes. Consequently, targeting the NMNAT3-PARP1 signaling pathway holds promise for the development of novel therapeutic strategies to alleviate mitochondrial damage-related disorders.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11884077 | PMC |
http://dx.doi.org/10.1186/s12967-025-06280-1 | DOI Listing |
Bioresour Technol
March 2025
State Key Laboratory of Synthetic Biology, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; College of Life and Health Sciences, Northeastern University, Shenyang 110169, China. Electronic address:
Nicotinamide mononucleotide (NMN) is a bioactive compound in NAD(P) metabolism, which exhibits diverse pharmaceutical interests. However, enhancing NMN biosynthesis faces the challange of competing with cell growth and disturbing intracellular redox homeostasis. Herein, we boosted NMN production in Escherichia coli by reprogramming central carbon metabolism with machine learning (ML)-guided cofactor engineering strategy.
View Article and Find Full Text PDFJ Transl Med
March 2025
School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, People's Republic of China.
Lipopolysaccharide (LPS) is known to induce cell injury and mitochondrial dysfunction, which are pivotal in neuroinflammation and related disorders. Recent studies have demonstrated the potential of nicotinamide mononucleotide (NMN) and poly(ADP-ribose) polymerase-1 (PARP1) inhibitors to enhance mitochondrial function. However, the underlying mechanisms have not been fully elucidated.
View Article and Find Full Text PDFMediators Inflamm
March 2025
Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
Plasma interleukin (IL)-27 is an important mediator of acute hepatic injury (AHI) associated with sepsis. Mitochondria contribute to the proper regulation of macrophage phagocytosis. In this study, we investigated the effect of IL-27 on mitochondrial function and the antimicrobial response of macrophages in sepsis-associated AHI.
View Article and Find Full Text PDFPhotochem Photobiol Sci
February 2025
Department of Pharmacy, Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, 233030, China.
β-Nicotinamide mononucleotide (NMN), as a precursor of long-lived protein co-factor nicotinamide adenine dinucleotide (NAD) in the human body, has demonstrated promising clinical value in treating photoaging and skin wounds. Previous research showed that NMN possessed significant skin protection against UVB-induced photoaging and promoted collagen synthesis. However, its potential mechanism remains unclear.
View Article and Find Full Text PDFBiotechnol J
February 2025
MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China.
Nicotinamide mononucleotide (NMN), a precursor of nicotinamide adenine dinucleotide (NAD), provides a direct method for maintaining NAD levels, which may alleviate aging and metabolic disorders. However, the enzymatic conversion of NMN in cascade reactions is limited by intermediate product inhibition, and quantitative insights into these limitations remain scarce. Here, an efficient multienzyme cascade system was developed by quantifying intermediate inhibition, which synthesizes NMN from D-ribose in three tandem reactions with an Adenosine Triphosphate (ATP) regeneration system and pyrophosphatase (PPase).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!