Neurons rely on the bloodstream for essential nutrients and oxygen, which is facilitated by an intricate coupling of the neuronal and vascular systems. Central to this neurovascular interaction is the vascular endothelial growth factor (VEGF) family, a group of secreted growth factors traditionally known for their roles in promoting endothelial cell proliferation, migration, and survival in the cardiovascular and lymphatic systems. However, emerging evidence shows that VEGFs also play indispensable roles in the nervous system, extending beyond their canonical angiogenic and lymphangiogenic functions. Over the past two decades, VEGFs have been found to exert direct effects on neurons, influencing key aspects of neuronal function independently of their actions on vascular cells. In particular, it has become increasingly evident that VEGFs also play crucial functions in the development, regulation, and maintenance of neuronal morphology. Understanding the roles of VEGFs in neuronal development is of high scientific and clinical interest because of the significance of precise neuronal morphology for neural connectivity and network function, as well as the association of morphological abnormalities with neurological and neurodegenerative disorders. This review begins with an overview of the VEGF family members, their structural characteristics, receptors, and established roles in vasculature. However, it then highlights and focuses on the exciting variety of neuronal functions of VEGFs, especially their crucial role in the development, regulation, and maintenance of neuronal morphology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11884128 | PMC |
http://dx.doi.org/10.1186/s12929-025-01128-8 | DOI Listing |
Cells
February 2025
Department of Biochemistry and Molecular Biology and Physiology, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain.
Neurodegenerative diseases encompass a number of very heterogeneous disorders, primarily characterized by neuronal loss and a concomitant decline in neurological function. Examples of this type of clinical condition are Alzheimer's Disease, Parkinson's Disease, Huntington's Disease and Amyotrophic Lateral Sclerosis. Age has been identified as a major risk in the etiology of these disorders, which explains their increased incidence in developed countries.
View Article and Find Full Text PDFCells
February 2025
Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, I-62032 Camerino, Italy.
Parkinson's disease (PD) represents a growing challenge to global health, as it involves millions of people. The high grade of disability is due to the loss of dopaminergic neuron activity, and levodopa is the gold-standard therapy used to restore dopamine in the dopamine-denervated regions. Another therapeutic approach is the use of A adenosine receptor antagonists and, among them, istradefylline is the only one currently approved for therapy in association with levodopa.
View Article and Find Full Text PDFCells
February 2025
Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.
Perineuronal nets (PNNs) are specialized extracellular matrix structures that predominantly surround inhibitory neurons in the central nervous system (CNS). They have been identified as crucial regulators of synaptic plasticity and neuronal excitability. This literature review aims to summarize the current state of knowledge about PNNs, their molecular composition and structure, as well as their functional roles and involvement in neurological diseases.
View Article and Find Full Text PDFCells
February 2025
Institute of Molecular Medicine, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan.
Brain injuries can result from accidents, warfare, sports injuries, or brain diseases. Identifying regeneration-associated genes (RAGs) during epigenome remodeling upon brain injury could have a significant impact on reducing neuronal death and subsequent neurodegeneration for patients with brain injury. We previously identified several WNT genes as RAGs involved in the neurite regrowth of injured cortical neurons.
View Article and Find Full Text PDFSovrem Tekhnologii Med
March 2025
DSc, Professor, Department of Biophysics, Faculty of Biology; Lomonosov Moscow State University, 1 Leninskiye Gory, Moscow, 119991, Russia; Professor, Department of Physical Materials; National University of Science and Technology "MISIS", 4 Leninsky Prospect, Moscow, 119049, Russia.
Unlabelled: was to identify differences in the structure of the neuronal process network as well as the composition and functional state of cells by studying the bodies and processes of rat brain neurons and astrocytes obtained from pluripotent stem cells of healthy donors and patients with hereditary Parkinson's disease by using a complex of modern high-precision methods such as Raman microspectroscopy, surface-enhanced Raman microspectroscopy, and scanning ion-conductance microscopy.
Materials And Methods: By using Raman spectroscopy and scanning ion-conductance microscopy, the researchers studied the morphology and state of molecules in rat brain neurons and astrocytes induced from pluripotent stem cells of healthy donors and patients with hereditary Parkinson's disease.
Results: The researchers established that typical bands of Raman and surface-enhanced Raman spectra of neurons and astrocytes allowed studying the distribution and conformation of a series of biological molecules (proteins, lipids, cytochromes) in healthy and unhealthy states.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!