Background: Apple leaves are a rich source of bioactive compounds such as phenolics, flavonoids, and essential minerals, which exhibit significant antioxidant and therapeutic properties. This study focuses on comparing the biochemical composition, antioxidant capacity, and mineral contents of Malus domestica Borkh. cultivars and M. kirghisorum Al. Fed. & Fed. genotypes. The goal is to identify potential health-promoting compounds and establish a basis for utilizing apple leaves as a sustainable resource in the food, pharmaceutical, and cosmetic industries.

Results: The study revealed significant biochemical and nutritional variation among the genotypes. Total antioxidant capacity ranged from 36.00 in 'A12' to 59.50% in 'Starking Delicious'. Total phenolic content varied between 70.42 in 'A28' and 147.45 mg GAE/100 g in 'Granny Smith', while total flavonoid content ranged from 15.43 in 'A28' to 38.66 mg QE/100 g in 'A16', demonstrating considerable variability in bioactive compound composition. Correlation matrix analysis identified several significant relationships. Total phenolics and total flavonoids showed a positive correlation (r = 0.52**), while calcium strongly correlated with magnesium (r = 0.79**), potassium (r = 0.52**), and phosphorus (r = 0.52**), underscoring their physiological interconnections. Multiple regression analysis clarified key traits. Total phenolic content was positively influenced by total flavonoids (β = 0.52, p < 0.00). Calcium was strongly associated with magnesium (β = 0.52, p < 0.00) and sodium (β = 0.46, p < 0.00), reflecting their synergistic roles in cellular and metabolic functions. Principal component analysis revealed that the first three components explained 57.80% of the total variation. PC1 (30.56% variance) was predominantly associated with calcium, potassium, phosphorus, and magnesium. PC2 (14.16%) highlighted the relationship between manganese and total antioxidant capacity, while PC3 (13.08%) reflected the influence of lead, total phenolics, and total flavonoids. Heat map analysis indicated that the calcium, phosphorus, sulfur, phenolic compounds, and antioxidant activities in subgroup A1 suggest that the genotypes may be beneficial for health. Additionally, the accumulation of heavy metals such as lead, nickel, and aluminum in subgroup B1 could pose a health risk; however, the genotypes 'A18', 'A21', 'A21-1', and 'A22' possess the capacity to reduce this accumulation.

Conclusions: The results highlight the nutritional and therapeutic potential of apple leaves as a natural source of antioxidants and essential minerals. In particular, the genotypes 'A21-1' and 'A16' stand out due to their high content of bioactive compounds and nutrients, offering promising prospects for further research and applications. These findings contribute to the conservation of wild apple genetic resources and their potential for industrial use.

Clinical Trial Number: Not applicable.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11887349PMC
http://dx.doi.org/10.1186/s12870-025-06284-5DOI Listing

Publication Analysis

Top Keywords

antioxidant capacity
12
biochemical composition
8
malus domestica
8
domestica borkh
8
kirghisorum fed
8
fed fed
8
apple leaves
8
total phenolic
8
phenolic content
8
total flavonoids
8

Similar Publications

Carboxymethyl Cellulose Surface Modification Alleviates the Toxicity of Fe-MOFs to Rice and Improves Iron Absorption.

Nanomaterials (Basel)

February 2025

Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.

Iron-based metal-organic frameworks (Fe-MOFs) are widely used for agricultural chemical delivery due to their high loading capacity, and they also have the potential to provide essential iron for plant growth. Therefore, they hold significant promise for agricultural applications. Evaluating the plant biotoxicity of Fe-MOFs is crucial for optimizing their use in agriculture.

View Article and Find Full Text PDF

Persulfate-based advanced oxidation processes (PS-AOPs) catalyzed by carbon-based catalysts are promising for removing organic pollutants via radical/non-radical pathways. However, the activation efficiency of peroxymonosulfate (PMS) or peroxydisulfate (PDS) usage and the reaction mechanism remain insufficiently understood. In this study, the effects of PMS/PDS dosage on the degradation of bisphenol A (BPA, 10 mg/L) were evaluated using N-doped biochar (N-BC, 0.

View Article and Find Full Text PDF

Blackcurrant press cake (BPC) anthocyanins were recovered using ultrasound-assisted extraction, and the optimal BPC extract was tested for its antioxidant capacity using chemical and biological assays and applied in a functional food model. Extraction at 400 W for 10 min followed by freeze-drying rendered an extract rich in polyphenols (47.83 mg GAE/g), where delphinidin-3-rutinoside, delphinidin-3-glucoside, cyanidin-3-rutinoside, and cyanidin-3-glucoside accounted for 75 % of total phenolics.

View Article and Find Full Text PDF

Impact of combined sun and hybrid drying technologies on cocoa drying process and quality.

Heliyon

February 2025

Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería en Mecánica y Ciencias de la Producción, Campus Gustavo Galindo Km 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador.

The drying process is essential in cocoa ( L.) production, significantly influencing product quality and energy consumption. This study compares four drying methods: sun drying (SD), solar-electric hybrid drying (HD), SD followed by HD (SD + HD), and HD followed by SD (HD + SD).

View Article and Find Full Text PDF

This study aimed to investigate the effects of fermented polysaccharides(FAP) on the growth performance, antioxidant capacity and intestinal health of broilers. A total of 1,080 Cyan-shank Partridge chickens were divided into 4 groups, with 6 replicates per group and 45 chickens per replicate. Add 0% (T1), 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!