Background: Hymenoptera venom allergy is a significant allergic reaction that affects a substantial proportion of adults. Accurate diagnosis of this allergy using venom extracts is challenging due to molecular cross-reactivity. Pure recombinant allergens offer a promising solution to identify the specific venom responsible for allergic reactions. This study aimed to produce recombinant phospholipase A5 (Ves v 5) from yellow jacket venom and evaluate the pattern of bee venom sensitization in a group of sensitive patients.

Methods And Results: A total of seven individuals, including four sensitive and three non-sensitive participants, were recruited for this study. Blood samples were collected, and serum was isolated to assess susceptibility to bee venom and recombinant allergens. Expression of Ves v 5 in Escherichia coli resulted in the production of soluble proteins, which were subsequently purified through affinity chromatography. The functionality of the recombinant allergens was evaluated through enzymatic and biophysical analyses, such as dot blot and SDS‒PAGE tests. The diagnostic relevance of Ves v 5 was further investigated using ELISA-based analyses of sera from yellow jacket venom-sensitized patients. Successful production of soluble Ves v 5 in Escherichia coli was achieved. The recombinant Ves v 5 exhibited distinct biochemical and functional characteristics. Evaluation of IgE reactivity in sera from patients underscored the importance of Ves v 5 in hymenoptera venom allergy.

Conclusions: Our findings suggest that recombinant allergens can serve as an alternative to natural extracts for diagnostic purposes. Furthermore, allergen-specific immunotherapy holds the potential to enhance efficiency and specificity in the treatment of hymenoptera venom allergy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11883983PMC
http://dx.doi.org/10.1186/s12865-025-00689-5DOI Listing

Publication Analysis

Top Keywords

yellow jacket
16
recombinant allergens
16
jacket venom
12
hymenoptera venom
12
venom
10
ves yellow
8
venom allergy
8
bee venom
8
ves escherichia
8
escherichia coli
8

Similar Publications

Floral nectar is a sugar-rich resource which is ubiquitously inhabited by a wide array of microorganisms. Fermentation by nectar-inhabiting microbes can alter several nectar traits, including nectar scent, via changes in the blend of volatile organic compounds (VOCs). Although there is growing evidence on how yeasts and bacteria influence the foraging behavior of flower-visiting insects, the potential role of other microbial taxa that can colonize nectar has been largely neglected.

View Article and Find Full Text PDF

The fall armyworm (FAW), Spodoptera frugiperda, is a serious invasive crop pest and threat to food security. Conventional pest control approaches using chemical pesticides can lead to adverse environmental and human health problems calling for safer alternative pest management options. Volatile organic compounds (VOCs) released by plants constitutively and in response to herbivory have been shown to enhance ecologically benign biocontrol alternatives to chemical insecticides for pest management.

View Article and Find Full Text PDF

Multiparasitism enables a specialist endoparasitoid to complete parasitism in an unsuitable host caterpillar.

Sci Rep

March 2025

Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 1‑2 Owashi, Tsukuba, Ibaraki, 305‑8634, Japan.

Parasitoid wasps serve as natural enemies of numerous insect species; therefore, knowledge of host-parasitoid interactions is fundamental for understanding ecosystems. Each endoparasitoid wasp taxon exhibits a specific host range. Female parasitoids, however, occasionally oviposit into non-host species.

View Article and Find Full Text PDF

Mixed cropping systems typically provide better natural pest control compared with monocultures, although the success varies depending on the crop and cultivar combinations. Understanding trait interactions that confer associational resistance (AR) to companion plants is key to optimizing these benefits. The Mesoamerican milpa system, known for its pest resistance, provides a model for studying these interactions.

View Article and Find Full Text PDF

Background: Hymenoptera venom allergy is a significant allergic reaction that affects a substantial proportion of adults. Accurate diagnosis of this allergy using venom extracts is challenging due to molecular cross-reactivity. Pure recombinant allergens offer a promising solution to identify the specific venom responsible for allergic reactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!