Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Magnetic soft actuators allow high-frequency shape reconfiguration of the micropillar array by rapid rotation of an external magnetic field; however, viscoelastic soft actuators cannot instantaneously reach an equilibrium deformation state to minimize the magnetic moment at a given short time scale, resulting in a significant reduction of the strain amplitude. Herein, we report high-frequency magnetic oscillation of a micropillar array without significant reduction in frequency or strain amplitude by programming the magnetization direction of hard magnetic microparticles embedded in a soft elastomer. Various oscillatory motions, including bending, twisting, and torsion under time-varying external magnetic fields, are demonstrated via programming the magnetization of anisotropic micropillars. Hybridization of microparticles and nanorods in magnetic composites improves the magnetic amplitude of micropillars through a synergistic effect. The translation of microscopic oscillatory motion into a macroscopic function is achieved by the rapid and large-amplitude magnetically programmable collective deformation of the micropillar array. Collective oscillatory torsion of the micropillar array functions as the legs in a walking robot as well as micropaddles that can program the chirality of the liquid flow. Point- or line-symmetric torsion enables the flow direction (counterclockwise or clockwise) to be programmed according to the direction of applied magnetic field to the micropillar array.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.4c15987 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!