Natural polysaccharides as the primary active components derived from herbal medicine often face challenges due to their large molecular weights, varying chemical structures and poor bioavailability, which significantly restrict their bioactive mechanism investigation and clinical applications. To improve the bioavailability and clarify the antiaging mechanism of polysaccharides from Polygoni Multiflori Radix Praeparata, the high-molecular-weight polysaccharides (PRP) were hydrolyzed into two low-molecular-weight fractions (PRP1 and PRP2) by hydrogen peroxide-ascorbic acid method. The results of structural characterization showed that they were glucans with the molecular weights of 13.43 kDa and 5.97 kDa, respectively. Compared with PRP and PRP1, PRP2 exhibited the most potent antiaging activity in D-galactose-treated T lymphocytes, attributed to its shorter chain length and lower molecular weight. Furthermore, oral administration with PRP2 not only decreased the levels of senescence-associated secretory phenotype (SASP)-related inflammatory cytokines, elevated the counts of T cells, NK cells, and macrophages in the blood, but also reduced the expressions of p16 and p21 proteins in spleen tissues of naturally aged C57BL/6J mice and two fast-aging (ERCC2 and TERT) mice. Mechanistically, PRP2 competitively bound with Keap1 and subsequently activated Nrf2/HO-1 pathway. Therefore, PRP2 could be explored as a potential candidate for treatment of age-related diseases and overall aging.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2025.123381DOI Listing

Publication Analysis

Top Keywords

hydrolyzed low-molecular-weight
8
polysaccharides polygoni
8
polygoni multiflori
8
multiflori radix
8
radix praeparata
8
molecular weights
8
prp1 prp2
8
prp2
5
structural characterizations
4
characterizations antiaging
4

Similar Publications

Natural polysaccharides as the primary active components derived from herbal medicine often face challenges due to their large molecular weights, varying chemical structures and poor bioavailability, which significantly restrict their bioactive mechanism investigation and clinical applications. To improve the bioavailability and clarify the antiaging mechanism of polysaccharides from Polygoni Multiflori Radix Praeparata, the high-molecular-weight polysaccharides (PRP) were hydrolyzed into two low-molecular-weight fractions (PRP1 and PRP2) by hydrogen peroxide-ascorbic acid method. The results of structural characterization showed that they were glucans with the molecular weights of 13.

View Article and Find Full Text PDF

Objectives: Soybeans have various positive effects on health, including anti-inflammatory and preventing kidney damage. There is concern regarding the phytoestrogen content due to the high isoflavone content in soybeans. Various forms of soybean processing have been tried; in this study, the hydrolysis method will be used to obtain the active substance Arginine-Glycine-Aspartate (RGD) tripeptide in soybean protein hydrolyzed by bromelain (SPHB).

View Article and Find Full Text PDF

Whey proteins have anti-fatigue activity, but there are few studies that have reported the ameliorative effects of branched-chain amino acid (BCAA) oligopeptides from whey proteins on fatigue in mice. The purposes of this study were to establish a process for the preparation of BCAA oligopeptides from whey protein and to investigate the anti-fatigue activity of BCAA oligopeptides. Whey proteins were hydrolyzed by trypsin and flavourzyme and purified by ethanol precipitation and reversed-phase high performance liquid chromatography (RP-HPLC).

View Article and Find Full Text PDF

Unveiling the enzymatic pathway of UMG-SP2 urethanase: insights into polyurethane degradation at the atomic level.

Chem Sci

January 2025

LAQV@REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto Rua do Campo Alegre s/n 4169-007 Porto Portugal

The recently discovered metagenomic urethanases UMG-SP1, UMG-SP2, and UMG-SP3 have emerged as promising tools to establish a bio-based recycling approach for polyurethane (PU) waste. These enzymes are capable of hydrolyzing urethane bonds in low molecular weight dicarbamates as well as in thermoplastic PU and the amide bond in polyamide employing a Ser-Ser -Lys triad for catalysis, similar to members of the amidase signature protein superfamily. Understanding the catalytic mechanism of these urethanases is crucial for enhancing their enzymatic activity and improving PU bio-recycling processes.

View Article and Find Full Text PDF

Collagen peptides play a crucial role in promoting skin elasticity and enhancing joint health, with potential functions to be explored. Enzyme hydrolysis is crucial for the molecular weight and sequence of peptides, influencing the bio-activity. In this study, the angiotensin-converting enzyme (ACE) inhibitory activity and fibroblast proliferation activity of differentially molecular weight peptides derived from dual- or triple-enzyme hydrolysis were compared.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!