In this study, a highly efficient La-FeO/dielectric barrier discharge (DBD)/honeycomb ceramic plate synergistic catalytic system was successfully constructed by using modified iron oxide (FeO) catalyst coating assisted DBD plasma, and the prepared catalytic coating was fully characterized by various techniques. The results indicate that the lanthanum (La) is efficiently and uniformly doped in FeO, and the modified La-FeO catalyst exhibited a better photocatalytic performance. The overuse of Thiamphenicol (TAP), as a typical chloramphenicol antibiotic, has led to its accumulation in the aquatic environment. Accordingly, TAP was selected as the target contaminant to evaluate the catalytic activity of the synergistic system. The results confirmed that the catalytic ability of the synergistic catalytic system was significantly improved, and the data showed that the degradation rate of the synergistic system reached 99.1% under the same conditions compared with 68.2% for the single DBD plasma, which effectively improved low energy efficiency limitations of the single DBD technology. Through quantitative measurements of the concentrations of dissolved ozone (O) and hydrogen peroxide (HO) in the system and radical trapping experiments, combined with emission spectroscopy, the mechanism of synergistic system degradation of TAP was analyzed. The intermediates in the degradation process were characterized by high-resolution mass spectrometry, and the degradation pathway of TAP was proposed based on the analysis of the intermediates and their combination with theoretical calculations. This study presents a theoretical basis for the improvement of DBD technology and a technical guide for the removal process of antibiotics from industrial wastewater.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jes.2024.09.015 | DOI Listing |
Front Microbiol
February 2025
Faculty of Functional Foods and Wine, Shenyang Pharmaceutical University, Benxi, China.
Fungal infections, particularly those caused by , represent a significant global health concern, with drug resistance and biofilm formation posing considerable challenges to effective treatment. Baicalein, a flavonoid derived from baicalin found in , has demonstrated considerable antifungal efficacy. Moreover, the combination of baicalein and fluconazole demonstrated a notable synergistic effect.
View Article and Find Full Text PDFFront Chem
February 2025
South African Institute for Advanced Materials Chemistry, University of Western Cape, Cape Town, South Africa.
The conversion of carbon dioxide (CO), a major greenhouse gas, into light olefins is crucial for mitigating environmental impacts and utilizing non-petroleum-based feedstocks. Thermo-catalytic CO transformation into valuable chemicals offers a promising solution to this challenge. This study investigates the effect of potassium (K) and manganese (Mn) promoters on CO conversion and CH selectivity over CoFe-ZSM-5 zeolites.
View Article and Find Full Text PDFAdv Colloid Interface Sci
March 2025
School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, HP 173229, India. Electronic address:
Defect engineering represents a paradigm shift in tailoring nanomaterials for enhanced catalytic performance across various applications. This manuscript succinctly highlights the significance of defect engineering in improving the catalytic performance of BiOI nanoparticles for multiple applications, particularly in photocatalysis. The photocatalytic process of BiOI semiconductor is intricately linked to its indirect bandgap and layered crystalline structure.
View Article and Find Full Text PDFJ Colloid Interface Sci
March 2025
School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang 330013, PR China. Electronic address:
Developing low-oxidant, high efficiency catalysts is critical to meet the green-circular goal in water treatments. Heteroatom-doped graphite-based carbon nitride carrier catalysts are among the most promising candidate materials in water purification catalysis. In this research, a bimetallic catalyst (Fe-Cu@SNC), featuring dual reaction centers, was prepared using a mass-producible co-precipitation method.
View Article and Find Full Text PDFWater Res
March 2025
College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, China; State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266580, China. Electronic address:
Heterogeneous catalytic ozonation (HCO) process is an efficiency and eco-friendly solution to the growing challenge of water purification, yet is challenging by O utilization, pollutants selectivity, and matter transfer resistance. Herein, adsorption-promoted photocatalytic ozonation (HCO/PO) system was constructed derived by triazine nanosheets-heptazine nanotubes homojunction carbon nitride composite Enteromorpha prolifera derived biochar (CN/EpC) to provide a targeted solution for the refractory organic pollutants treatment. In the HCO/PO system, the adsorption sites predominantly reside on EpC, while the catalytic sites are primarily located on CN.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!