Microplastics removal from stormwater runoff by bioretention cells: A review.

J Environ Sci (China)

Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.

Published: August 2025

Microplastics (MPs), as a new category of environmental pollutant, have been the hotspot of eco-friendly issues nowadays. Studies based on the aging process, the migration pattern of MPs in runoff rainwater, and the use of bioretention cells to remove MPs from runoff rainwater are beginning to attract widespread attention. This review analyses the migration patterns of MPs in rainwater runoff through their sources, structure and characteristics. The mechanism of removing MPs from runoff stormwater, the purification efficiency of different fillers and their influencing factors, and the accumulation, fate, and aging of MPs in bioretention cells are described. Furthermore, the hazards of MP accumulation on the performance of bioretention cells are summarised. Future directions for removing MPs in bioretention cells are proposed: (1) research on MPs smaller than 100 µm; (2) influence of MPs aging process on bioretention cells; (3) exploration of more effective fillers to enhance their removal efficiency; (4) research on synergistic removal mechanism of MPs and other pollution.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jes.2024.07.007DOI Listing

Publication Analysis

Top Keywords

bioretention cells
24
mps runoff
12
mps
10
aging process
8
runoff rainwater
8
removing mps
8
mps bioretention
8
bioretention
6
cells
6
runoff
5

Similar Publications

Microplastics removal from stormwater runoff by bioretention cells: A review.

J Environ Sci (China)

August 2025

Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.

Microplastics (MPs), as a new category of environmental pollutant, have been the hotspot of eco-friendly issues nowadays. Studies based on the aging process, the migration pattern of MPs in runoff rainwater, and the use of bioretention cells to remove MPs from runoff rainwater are beginning to attract widespread attention. This review analyses the migration patterns of MPs in rainwater runoff through their sources, structure and characteristics.

View Article and Find Full Text PDF

Profiling and metabolic analysis of microorganisms in bioretention cells vegetated with vetiver and cattail species treating nitrogen and phosphorous.

Int J Phytoremediation

February 2025

State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China.

Bioretention cells (BRCs) are increasingly used to treat nutrients in stormwater runoff, with plants known to enhance nitrogen (TN) and phosphorus (TP) uptake. This study investigated the role of rhizosphere microbial communities in TN, TP, and COD removal across three BRCs: an unvegetated control (CP), one vegetated with vetiver (P1), and another with cattail (P2). Detailed microbiome profiling revealed key taxa across phylum, family, and genus levels contributing to nutrient cycling, with P2 showing the highest species richness and diversity based on OTU counts and diversity indices.

View Article and Find Full Text PDF

Global climate change and rapid urbanization have increasingly intensified extreme rainfall events and surface runoff, posing significant challenges to urban hydrological security. Synergetic Grey-Green Infrastructure (SGGI) has been widely applied to enhance stormwater management in urban areas. However, current research primarily focused on optimizing and evaluating either grey infrastructure (GREI) or green infrastructure (GI) under single rainfall event, neglecting the non-stationary impacts of long-term climate change on infrastructure performance.

View Article and Find Full Text PDF

The dataset represents micro computed tomography (µCT) images of undisturbed samples of constructed Technosol, obtained by sampling from the top layer of the biofilter in two bioretention cells. A bioretention cell is a stormwater management system designed to collect and temporarily retain stormwater runoff and treat it by filtering it through a soil media called a biofilter. Soil samples were collected at 7, 12, 18, 23, and 31 months after the establishment of bioretention cells.

View Article and Find Full Text PDF

As high-standard farmland rapidly expands, agricultural non-point source pollution has emerged as a main environmental issue in China. To tackle nitrogen pollution, green infrastructure (GI), especially bioretention cells (BRCs), has been extensively adopted. However, the long-term effectiveness of these systems may be hindered by clogging and nitrogen leaching.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!