Even in small concentrations, toxic metals like lead, cadmium, and mercury are dangerous to the environment and human health. Environmental monitoring depends on precisely identifying these heavy metals, particularly cadmium ions (Cd(II)). In this study, we present a novel screen-printed carbon electrode (SPCE) modified with single crystalline α-FeO nano-hexagons that functions as a sensor for detecting Cd(II). The performance of the fabricated sensor was thoroughly assessed and compared with unmodified SPCE using the voltammetric method. The crystalline structure of the synthesized α-FeO nano-hexagons was confirmed through XRD, and surface analysis revealed an average diameter and thickness of 86 nm and 9 nm, respectively. The α-FeO modified SPCE yields a 7-fold enhanced response (at pH 5.0 vs. Ag/AgCl) to Cd(II) than bare SPCE. The modified electrode effectively detects Cd(II) with a linear response range of up to 333.0 µmol/L and a detection limit of 0.65 nmol/L under ideal circumstances. This newly fabricated sensor offers significant potential for environmental monitoring applications by providing outstanding practicality, anti-interference ability, and repeatability for detecting Cd(II) in water samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jes.2024.09.004 | DOI Listing |
J Am Chem Soc
March 2025
Institute for Decarbonization Materials, University of California, Berkeley, California 94720, United States.
The efficient removal of CO from exhaust streams and even directly from air is necessary to forestall climate change, lending urgency to the search for new materials that can rapidly capture CO at high capacity. The recent discovery that diamine-appended metal-organic frameworks can exhibit cooperative CO uptake via the formation of ammonium carbamate chains begs the question of whether simple organic polyamine molecules could be designed to achieve a similar switch-like behavior with even higher separation capacities. Here, we present a solid molecular triamine, 1,3,5-tris(aminomethyl)benzene (TriH), that rapidly captures large quantities of CO upon exposure to humid air to form the porous, crystalline, ammonium carbamate network solid TriH(CO)·HO (TriHCO).
View Article and Find Full Text PDFActa Crystallogr C Struct Chem
April 2025
Protein Structure Function Research Laboratory, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg 2050, South Africa.
Three multicomponent systems, namely, 2,4-diamino-6-phenyl-1,3,5-triazine-nicotinic acid (DAPT-NA), CHN·CHNO, (I), 2,4-diamino-6-phenyl-1,3,5-triazin-1-ium hydrogen malonate (DAPT-MMA), CHN·CHO, (II), and 2,4-diamino-6-phenyl-1,3,5-triazin-1-ium hydrogen (+)-dibenzoyl-D-tartarate (DAPT-DBTA), CHN·CHO, (III), have been synthesized and characterized via single-crystal X-ray diffraction, and their supramolecular interactions have been analysed. The formation of cocrystal (I) and salts (II) and (III) was confirmed through the widening of the C-N-C bond angle of the triazine moiety of 2,4-diamino-6-phenyl-1,3,5-triazine and the difference in the C-O bond distances between the carboxyl and carboxylate groups of the respective carboxylic acids. Cocrystal (I) and salt (II) form robust homomeric and heteromeric R(8) ring motifs through primary acid-base interactions and complementary base pairing.
View Article and Find Full Text PDFAcc Chem Res
March 2025
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
ConspectusCovalent organic frameworks (COFs) represent a fascinating class of crystalline porous polymers constructed from organic building blocks linked by covalent bonds. Benefiting from their high crystallinity, large surface area, and ease of functionalization, COFs have demonstrated significant potential across various fields, including gas adsorption, luminescence, sensing, catalysis, energy storage, nanomedicine, etc. In the first decade of COF development, only those with homogeneous porosity have been constructed, and thus, their topological structures are quite limited.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2025
College of Optoelectronic Engineering, Guilin University of Electronic Technology, Guilin 541004, China.
The use of BaTiO (BTO) ferroelectric thin films in flexible ferroelectric memory offers a promising pathway for next-generation nonvolatile memory applications, given BTO's excellent ferroelectric properties, stability, high dielectric constant, and strong fatigue resistance. However, the fabrication of BTO on flexible substrates presents a significant technical challenge. In this study, we achieved high-quality, single-crystalline (111)-oriented BTO films on mica substrates through the design of buffer layers.
View Article and Find Full Text PDFJ Mol Graph Model
March 2025
Department of Chemical Engineering, Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, Iran. Electronic address:
Covalent Organic Frameworks (COFs) are a new class of highly porous crystalline substances which have demonstrated excellent potential as novel adsorbents for efficient depollution of pharmaceutical compounds from wastewater. Herein, the molecular mechanism involved in the removal process of non-steroidal anti-inflammatory drug residues, Ibuprofen (IBP) and Naproxen (NPX), from polluted water by an emerging novel COF functionalized with vinyl groups (COF-V), is evaluated through molecular dynamics (MD) simulations under various external electric fields (EFs). MD analyses show that COF-V is efficient in drug loading capacity of % 100 with total interaction energy value of -519.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!