Low-dose natural clay Kaolin promotes the growth of submerged macrophytes and alters the rhizosphere microorganism community: Implications for lake restoration.

J Environ Sci (China)

Key laboratory of Exploration and Utilization of Aquatic Genetic Resources of the Ministry of Education, Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai 201306, China. Electronic address:

Published: August 2025

Sediment properties have a crucial effect on the growth and recovery of aquatic plants in lakes. Addition of various chemical substances has been proposed to reinforce the recovery of plants after a nutrient loading reduction. However, the effects of such sediment amendments on plant growth, especially those from rhizosphere microorganisms, is limited. We added Kaolin clay to sediments in different concentrations to explore its impact on the growth of Vallisneria natans and Ottelia acuminate and the concurrent shift in rhizosphere microorganisms using high-throughput sequencing technology. We found that the addition of low doses (10 % and 20 % in mass ratio) of Kaolin significantly modified sediment conditions (oxidation reduction potential and pH), with implications also for the composition, diversity, and stability of rhizosphere microorganisms. LEfSe analysis revealed that low-dose addition of Kaolin increased the abundances of functional microbial groups that benefit plant nutrient absorption and enhance plant stress resistance, such as Spirillaceae, Rhodocyclaceae, and Burkholderiales. Moreover, low doses of Kaolin significantly promoted the photosynthesis and nutrient absorption of submerged macrophytes, thereby facilitating plant growth. A structural equation model (SEM) indicated that the direct impact of Kaolin on the growth of submerged plants was relatively minor, while the indirect effect through modulation of rhizosphere microorganisms was important. Our study suggests that low doses of Kaolin may be used to promote the growth of submerged macrophytes when lakes with a high organic content in the sediment are recovering after nutrient loading reduction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jes.2024.06.046DOI Listing

Publication Analysis

Top Keywords

rhizosphere microorganisms
16
growth submerged
12
submerged macrophytes
12
low doses
12
nutrient loading
8
loading reduction
8
plant growth
8
nutrient absorption
8
doses kaolin
8
kaolin
7

Similar Publications

Background: The study of soil environment in drainage fields is important for environmental management and ecological restoration, and there is currently a knowledge gap in understanding the impact of soil microbial communities in the Shengli coalfield drainage fields and the corresponding ecological effects. To investigate the changes in rhizosphere soil microbial communities of different dominant plants after years of restoration, this study examines the improvement effects of different dominant plants on the soil environment.

Results: This study is based on high-throughput sequencing to restore the slope of coal mine spoil after 15 years as the sampling site.

View Article and Find Full Text PDF

Rhizosphere metabolite dynamics in continuous cropping of vineyards: Impact on microflora diversity and co-occurrence networks.

Microbiol Res

March 2025

College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China; Shanxi Engineering Research Center for Viti-Viniculture, Yangling, Shanxi 712100, China. Electronic address:

The metabolism of the crop rhizosphere affects microflora diversity and nutrient cycling. However, understanding rhizosphere metabolism in suitable crops within arid desert environments and its impact on microflora interactions remains limited. Through metagenomic and non-targeted metabolomic sequencing of rhizosphere soils from one uncultivated land and four vineyards with cropping years of 5, 10, 15 and 20 years, the critical importance of rhizosphere metabolites in maintaining bacterial and fungal diversity was elucidated.

View Article and Find Full Text PDF

Introduction: Lindm., a dominant forage grass on the Tibetan Plateau, plays a critical role in livestock production and grassland restoration. This study investigates the rhizospheric and non-rhizospheric soil microorganisms of in the Ganzi River area of the Qinghai Lake basin using metagenomic sequencing to understand their diversity and potential ecological functions.

View Article and Find Full Text PDF

Microbial dissimilated iron reduction is one of the important driving forces of the biological and geochemical cycles of iron in nature. Plant root exudates dominated by organic acids are important electron donors of the rhizosphere dissimilar iron reduction microorganisms under flooded conditions. In this paper, we investigated the effects of different kinds and concentrations of organic acids on the dissimilation reduction process of goethite by Shewanella oneidensis MR-1, and explored the effect of phase transformation of iron minerals on its adsorption of Cd.

View Article and Find Full Text PDF

Resilience mechanisms of rhizosphere microorganisms in lead-zinc tailings: Metagenomic insights into heavy metal resistance.

Ecotoxicol Environ Saf

March 2025

College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China.

This study investigates the impact of heavy metal contamination in lead-zinc tailings on plant and soil microbial communities, focusing on the resilience mechanisms of rhizosphere microorganisms in these extreme environments. Utilizing metagenomic techniques, we identified a significant association between Coriaria nepalensis Wall. rhizosphere microbial communities and metal(loid) resistance genes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!