Over the past century, advancements in chemistry have significantly propelled human innovation, enhancing both industrial and consumer products. However, this rapid progression has resulted in chemical pollution increasingly surpassing planetary boundaries, as production and release rates have outpaced our monitoring capabilities. To catalyze more impactful efforts, this study transitions from traditional chemical assessment to inverse chemical design, introducing a generative graph latent diffusion model aimed at discovering safer alternatives. In a case study on the design of green solvents for cyclohexane/benzene extraction distillation, we constructed a design database encompassing functional, environmental hazards, and process constraints. Virtual screening of previous design dataset revealed distinct trade-off trends between these design requirements. Based on the screening outcomes, an unconstrained generative model was developed, which covered a broader chemical space and demonstrated superior capabilities for structural interpolation and extrapolation. To further optimize molecular generation towards desired properties, a multi-objective latent diffusion method was applied, yielding 19 candidate molecules. Of these, 7 were identified in PubChem as the most viable green solvent candidates, while the remaining 12 as potential novel candidates. Overall, this study effectively designed green solvent candidates for safer and more sustainable industrial production, setting a promising precedent for the development of environmentally friendly alternatives in other areas of chemical research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jes.2024.08.014 | DOI Listing |
Inorg Chem
March 2025
College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao 266590, China.
Cesium-lead halide perovskite nanomaterials have been considered new-generation emitters that can meet the requirements of high photoluminescence efficiency and the high color standard of Rec. 2020. However, their practical application is currently hindered by the challenge of achieving better stability and growth in green solvents.
View Article and Find Full Text PDFJ Org Chem
March 2025
Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
Arylsulfonylindole and arylsulfenylindole motifs stand as privileged scaffolds in drug discovery. Traditional methods for synthesizing these molecules have relied mainly on prefunctionalized precursors, involving multistep processes and generating a large amount of waste. In this study, we present a modular protocol for the preparation of 3-sulfonylindoles and 3-sulfenylindoles using indoles and thiols as starting materials via hexamolybdate/HO-mediated oxidative dehydrogenative C-S coupling.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2025
Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
Green-solvent-processed all-polymer solar cells (AP-SCs) are regarded as an excellent candidate for renewable energy due to their better stability and eco-friendly features. Two polymers, PYF-U and PYF-BO, have been designed by introducing a Y-series derivative with difluoro-substituted dicyanindenone units and a difluorobenzotriazole derivative as the first and second electron-deficient (A) units, respectively. The introduction of two additional F atoms on dicyanindenone units leads to a more coplanar backbone because of noncovalent interactions.
View Article and Find Full Text PDFNanomaterials (Basel)
March 2025
Department of Chemistry and Biochemistry, California State University Long Beach, 1250 Bellflower Blvd., Long Beach, CA 90840, USA.
The availability of water-soluble nanoparticles allows catalytic reactions to occur in highly desirable green environments. The catalytic activity and selectivity of water-soluble palladium nanoparticles capped with 6-(carboxylate)hexanethiolate (C6-PdNP) and 5-(trimethylammonio)pentanethiolate (C5-PdNP) were investigated for the reduction of 4-nitrophenol, the oxidation of α,β-conjugated aldehydes, and the C-C coupling of phenylboronic acid. The study showed that between the two PdNPs, C6-PdNP exhibits better catalytic activity for the reduction of 4-nitrophenol to 4-aminophenol in the presence of sodium borohydride and the selective oxidation of conjugated aldehydes to conjugated carboxylic acids.
View Article and Find Full Text PDFSoft Matter
March 2025
Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, via della Lastruccia 3, Sesto Fiorentino, Florence, Italy.
Polyurethanes are largely employed in various fields such as building, insulation and adhesive industries, but there is the constant need to develop sustainable formulations using "green" components and feasible processes. Here, a new series of sustainable castor oil and epoxidized castor oil-based (CO/EpCO) polyurethane networks was synthetized and characterized. The added epoxy functions react with isocyanates forming oxazolidinone linkages in the gels' network, reducing the gelation time from over 3 hours up to 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!