Traditional in situ biogeochemical transformation suffers from competition among crucial microorganisms and inadequate formation of reactive minerals, thus leading to the accumulation of toxic intermediates. In this study, three regulation schemes were proposed to solve these problems from the perspective of engineering mode. Results showed intermittent injection mode effectively reduced the accumulation of toxic intermediates but the reduction rate of tetrachloroethylene was decreased. And periodical supplementation of carbon and sulfur sources accelerated the removal of tetrachloroethylene but failed to reduce the accumulation of toxic products. While, regular supplementation of sulfate effectively weakened the competition of methanogens and increased the iron sulfide proportion on the surface of the minerals, thus reducing the accumulation of toxicity. Based on the results, this study obtained an effective engineering approach for practical site application. In addition, the main forms of active minerals capable of β-eliminating contaminants during biogeochemical transformation were identified in this study, including FeS, FeS, and FeS. Furthermore, the engineered regulatory mechanism of this study was summarized through the analysis of microbial community structure and mineral morphology. The amendment promotes the production of minerals and thus controls the transformation pathway of contaminants by altering the abundance of sulfate-reducing bacteria and dissimilatory iron reducing bacteria. This mechanism can provide a basis for subsequent theoretical studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jes.2024.08.017 | DOI Listing |
Environ Sci Technol
March 2025
GEUS, Geological Survey of Denmark and Greenland, DK-1350 Copenhagen, Denmark.
The catalytic effect of aqueous Fe(II) (Fe) on the transformation of Fe(oxyhydr)oxides has been extensively studied in the laboratory. It involves the transfer of electrons between Fe and Fe-(oxyhydr)oxides, rapid atomic exchange of Fe between the two states, and recrystallization of the Fe-oxides into more stable Fe-(oxyhydr)oxides. The potential occurrence of these reactions in natural soils and sediments can have an important impact on biogeochemical cycling of iron, carbon, and phosphorus.
View Article and Find Full Text PDFEnviron Pollut
March 2025
National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China. Electronic address:
Heavy metal (HM) contamination of agricultural products is of global environmental concern as it directly threatened the food safety. Plant-associated microbiome, particularly endophytic microbiome, hold the potential for mitigating HM stress as well as promoting plant growth. The metabolic potentials of the endophytes, especially those under the HM stresses, have not been well addressed.
View Article and Find Full Text PDFJ Environ Manage
March 2025
State Environmental Protection Key Laboratory of Lake Pollution Control, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
The linkages of distributed ponds are utilized in conjunction with one another to remediate non-point source (NPS) pollution in a water-scarce basin. This study provides an overview of a state-of-the-art thorough evaluation of ponds, which offers insight into the majority of topics covered by the ongoing scientific studies, including their various functions and factors affecting their functioning on the hydrological, physicochemical, and biological processes, such as environmental climate factors and basin-specific landscape configuration parameters, as well as process parameters for design, operation and management aspects. The linkages of ponds provide a variety of sustainable services (6R functions), such as resources, restoration, reduction, reuse, recycling, and recovery.
View Article and Find Full Text PDFJ Hazard Mater
March 2025
State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China. Electronic address:
Phages have garnered increasing attention due to their potential roles in biogeochemical cycling. However, their impacts on nitrogen cycling have primarily been inferred from the presence of putative auxiliary metabolic genes (AMGs) and the virus-host linkage, despite of very limited direct experimental evidence. In this study, a series of microcosms were established with the inoculation of either native or non-native phages to simulate coastal wetlands with different phage sources and different levels of copper (Cu) contamination.
View Article and Find Full Text PDFJ Appl Microbiol
March 2025
National Institute of Advanced Industrial Science and Technology, Sapporo, Hokkaido 062-8517, Japan.
Aims: Microbial communities in paddy soils act as potential sinks of nitrous oxide (N2O), a notorious greenhouse gas, but their potential to reduce external N2O is unclear. The direct observation of N2O reduction in submerged field soils is technically difficult. Here, we aimed to identify soil microbial clades that underpin the strong N2O mitigation capacity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!